Linux内核设计(第二周)——操作系统工作原理
Linux内核设计(第二周)——操作系统工作原理
一、学习笔记总结
1.函数调用堆栈
(1)、函数调用堆栈。
堆栈是C语言程序运行时必须的一个记录调用路径和参数的空间。
cpu内部已经集成好的功能,pop,push,enter……
函数调用构架
传递参数,通过堆栈
保存返回值,%eax
提供局部变量空间
……
C语言编译器对堆栈的使用有一套自己的规则,功能相同,指令有区别。
(2)、深入理解函数调用堆栈
堆栈相关的寄存器:
%esp——堆栈指针
%ebp——基址指针堆栈操作
push——栈顶地址减少
pop——相反%ebp在C语言中用作记录当前函数调用基址
其他关键寄存器
CS:eip:总是指向下一条的指令地址
顺序执行、跳转|分支(cs:eip的值会根据程序的需求更改)、call、ret、发生中断时。调用函数
call指令:
(1) 将eip中下一条指令的地址A保存在栈顶;
(2) 设置eip指向被调用程序代码开始处。
ret(return)指令:将地址A恢复到eip中
(3)、传递参数与局部变量
方法:gcc-g生成可执行文件,用objdump -S获得反汇编文件。
2.利用Linux内核部分源代码分析存储程序计算机工作模型及时钟中断
(1).mykernel实验平台涉及的思想
三大法宝:
存储程序计算机
函数调用堆栈
中断
当中断发生时,由CPU和内核代码共同实现了保存现场和恢复现场。
把eip指向中断处理程序的入口,保存现场。
二.利用mykernel实验模拟计算机硬件平台
1.实验过程
使用实验楼的虚拟机打开shell
cd LinuxKernel/linux-3.9.4
qemu -kernel arch/x86/boot/bzImage
然后cd mykernel 您可以看到qemu窗口输出的内容的代码mymain.c和myinterrupt.c
mymain.c文件关键代码部分
myinterrupt.c文件关键代码部分
2.代码分析
(1)mymain.c
/*
* linux/mykernel/mymain.c
*
* Kernel internal my_start_kernel
*
* Copyright (C) 2013 Mengning
*
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"
tPCB task[MAX_TASK_NUM]; //声明一个PCB数组
tPCB * my_current_task = NULL; //声明当前task指针
volatile int my_need_sched = 0; //是否需要调度标志
void my_process(void);
void __init my_start_kernel(void)
{
int pid = 0;
int i;
/* 初始化 0号进程*/
task[pid].pid = pid;
task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; /* 实际上是my_process*/
task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
task[pid].next = &task[pid]; // 定义堆栈的栈顶
/*创建更多的子进程*/
for(i=1;i<MAX_TASK_NUM;i++)
{
memcpy(&task[i],&task[0],sizeof(tPCB));
task[i].pid = i;
task[i].state = -1;
task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
task[i].next = task[i-1].next;
task[i-1].next = &task[i];
}
/* 从0号进程开始启动 */
pid = 0;
my_current_task = &task[pid];
asm volatile(
"movl %1,%%esp\n\t" /* 设置 esp 的值*/
"pushl %1\n\t" /* 将 ebp 压栈(此时esp=ebp),%1相当于task[pid].thread.sp*/
"pushl %0\n\t" /* 将 eip 压栈,%0相当于task[pid].thread.ip*/
"ret\n\t" /* 相当于 eip 出栈 */
"popl %%ebp\n\t" /* 0号进程正是启动 */
:
: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/
);
}
void my_process(void)
{
int i = 0;
while(1)
{
i++;
if(i%10000000 == 0)
{
printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
if(my_need_sched == 1)
{
my_need_sched = 0;
my_schedule();
}
printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
}
}
}
(2)myinterrupt.c
/*
* linux/mykernel/myinterrupt.c
*
* Kernel internal my_timer_handler
*
* Copyright (C) 2013 Mengning
*
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"
extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;
/*
* Called by timer interrupt.
* it runs in the name of current running process,
* so it use kernel stack of current running process
*/
void my_timer_handler(void)
{
#if 1
if(time_count%1000 == 0 && my_need_sched != 1)
{
printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
my_need_sched = 1;
}
time_count ++ ;
#endif
return;
}
void my_schedule(void)
{
tPCB * next;
tPCB * prev;
if(my_current_task == NULL
|| my_current_task->next == NULL)
{
return;
}
printk(KERN_NOTICE ">>>my_schedule<<<\n");
/* schedule */
next = my_current_task->next;
prev = my_current_task;
if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
{
/* 进程切换跳转到下一进程 */
asm volatile(
"pushl %%ebp\n\t" /* 保存当前ebp */
"movl %%esp,%0\n\t" /* 保存当前esp */
"movl %2,%%esp\n\t" /* 重新记录要跳转进程的 esp,%2为 next->thread.sp*/
"movl $1f,%1\n\t" /* 保存当前 eip ,%1为prev->thread.ip*/
"pushl %3\n\t"
"ret\n\t" /* 记录要跳转进程的 eip,%3为 next->thread.ip*/
"1:\t" /* 下一个进程开始执行 */
"popl %%ebp\n\t"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
}
else
{
next->state = 0;
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
/* switch to new process */
asm volatile(
"pushl %%ebp\n\t" /* 保存当前 ebp */
"movl %%esp,%0\n\t" /* 保存当前 esp */
"movl %2,%%esp\n\t" /* 重新记录要跳转进程的 esp ,%2为 next->thread.sp*/
"movl %2,%%ebp\n\t" /* 重新记录要跳转进程的 ebp,%2为 next->thread.sp */
"movl $1f,%1\n\t" /* 保存当前 eip ,%1为prev->thread.ip,%1f就是指标号1:的代码在内存中存储的地址*/
"pushl %3\n\t"
"ret\n\t" /* 重新记录要跳转进程的 eip,%3为 next->thread.ip */
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
}
return;
}
#三、总结
本周从计算机操作系统对于程序的调用学起,结合了以前学习的汇编、C语言的知识,对于计算机内部对于中断的处理和进程切换有新的认识。有一些不明白的内容老师也在课堂上已经做出了详细的解答,很形象生动。本周因为一些个人因素进度有些太慢,这种情况应该有所规避,以后要改正。
Linux内核设计(第二周)——操作系统工作原理的更多相关文章
- Linux内核设计第二周——操作系统工作原理
Linux内核设计第二周 ——操作系统工作原理 作者:宋宸宁(20135315) 一.实验过程 图1 执行效果 从图中可以看出,每执行my_ start_ kernel函数两次或一次,my_ time ...
- Linux内核分析第二周--操作系统是如何工作的
Linux内核分析第二周--操作系统是如何工作的 李雪琦 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...
- linux内核分析 第二周 操作系统是如何工作的
银雪纯 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.计算机是如何工作的 ...
- 20135327郭皓——Linux内核分析第二周 操作系统是如何工作的
操作系统是如何工作的 上章重点回顾: 计算机是如何工作的?(总结)——三个法宝 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的 ...
- Linux内核设计第二周学习总结 完成一个简单的时间片轮转多道程序内核代码
陈巧然 原创作品 转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.使用实验楼的虚拟机 ...
- Linux内核设计第一周 ——从汇编语言出发理解计算机工作原理
Linux内核设计第一周 ——从汇编语言出发理解计算机工作原理 作者:宋宸宁(20135315) 一.实验过程 图1 编写songchenning5315.c文件 图2 将c文件汇编成32位机器语言 ...
- LINUX内核分析第二周学习总结——操作系统是如何工作的
LINUX内核分析第二周学习总结——操作系统是如何工作的 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...
- Linux内核分析第二周学习博客——完成一个简单的时间片轮转多道程序内核代码
Linux内核分析第二周学习博客 本周,通过实现一个简单的操作系统内核,我大致了解了操作系统运行的过程. 实验主要步骤如下: 代码分析: void my_process(void) { int i = ...
- linux内核分析第二周
网易云课堂linux内核分析第二周 20135103 王海宁 <Linux内核分析>MOOC课程http://mooc.study.163.com/cours ...
- Linux内核分析第二周学习笔记
linux内核分析第二周学习笔记 标签(空格分隔): 20135328陈都 陈都 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.co ...
随机推荐
- [Python] 制作启动uiautomator2 的web版 uiautomatorviewer2 批处理启动
打开一个txt文件,复制如下命令进行并另存为为 .bat文件 @echo on @echo 正在启动 uiautomatorviewer2 python -m weditor @echo off 注意 ...
- Python接口自动化--Json数据处理 5
1.Json模块简介,全名JavaScript Object Notation,轻量级的数据交换格式,常用于http请求中. Encoding basic Python object hierarch ...
- Linux基础第一课——基础知识了解
前言 发展历史 linus 林纳斯 赫尔辛基大学 在自己的笔记本上安上自己写的操作系统 基于Linux内核 Linux内核 也是基于unix内核开发出来 unix 不开源 只能军方和大学使用 Linu ...
- python第三十五课——生成器
1.生成器: 什么是生成器? 它内部封装了一套公式/算法,只有等到需要调用/执行数据时 --> next()函数执行 才会将公式计算得到数据结果,这就是生成器的原理(核心思想): [注意事项]: ...
- 测试udp服务的端口是否可用
测试tcp服务的端口是否可用,可以使用: telnet ip port 但是如果这个用在upd服务上,就会报错, 因为telnet走的是tcp协议, 比如说192.168.80.131在8888端 ...
- MP实战系列(十四)之分页使用
MyBatis Plus的分页,有插件式的,也有其自带了,插件需要配置,说麻烦也不是特别麻烦,不过觉得现有的MyBatis Plus足以解决,就懒得配置插件了. MyBatis Plus的资料不算是太 ...
- shiro实战系列(一)之入门实战
一.什么是shiro? Apache Shiro 是一个强大而灵活的开源安全框架,它干净利落地处理身份认证,授权,企业会话管理和加密. Apache Shiro 的首要目标是易于使用和理解.安全有 ...
- java读写properties配置文件不改变属性的顺序和注释
先贴代码 import java.io.BufferedWriter; import java.io.File; import java.io.FileInputStream; import java ...
- JSON无限折叠菜单编写
最近看了一篇关于JSON无限折叠菜单的文章 感觉写的不错,也研究了下代码,所以用自己编码方式也做了个demo 其实这样的菜单项在我们网站上或者项目导航菜单项很常见的一种效果,特别是在一些电子商务网上上 ...
- P3195 [HNOI2008]玩具装箱TOY
列出DP方程式:设f[i]表示分组完前i件物品的最小花费,为方便计算,设sum[i]表示是前i件物品的长度和. f[i]=min(f[j]+(sum[i]-sum[j]+i-j-L-1)^2) [0& ...