concurrent.futures进线程池和协程
concurrent.futures
异步执行进程线程池的模块,一个抽象类,定义submit,map,shutdown方法
from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
import time,os,random def task(n):
print(os.getpid(),'is running')
time.sleep(random.randint(,))
return n** if __name__ == '__main__':
p = ProcessPoolExecutor()
obj = p.map(task,range())
p.shutdown()
print(list(obj))
进程池
线程池就是
ProcessPoolExecutor换成
ThreadPoolExecutor
import os,time,requests,re
from concurrent.futures import ThreadPoolExecutor def get_page(url):
print(url)
ret = requests.get(url).text
return {'url':url,'text':ret}
def get_p(res):
res = res.result()
rep = re.compile(r'<a href="/films/\d+" title="(?P<name>.*?)" class="image-link.*?<p class="star">(?P<star>.*?)</p>',re.S)
ret = rep.finditer(res['text'])
with open('db.txt','a',encoding='utf-8')as f:
for i in ret:
s = "name:%s"%i.group("name")+i.group('star')
f.write(s+'\n')
if __name__ == '__main__':
t = time.time()
p = ThreadPoolExecutor()
urls = [
'http://maoyan.com/board/7',
'http://maoyan.com/board/6',
'http://maoyan.com/board/1',
'http://maoyan.com/board/2',
'http://maoyan.com/board/4',
]
for url in urls:
p.submit(get_page,url).add_done_callback(get_p)
p.shutdown()
print(time.time()-t)
回调函数
协程
协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。、
需要强调的是:
#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
#2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)
对比操作系统控制线程的切换,用户在单线程内控制协程的切换
优点如下:
#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
#2. 单线程内就可以实现并发的效果,最大限度地利用cpu
缺点如下:
#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
#2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
总结协程特点:
- 必须在只有一个单线程里实现并发
- 修改共享数据不需加锁
- 用户程序里自己保存多个控制流的上下文栈
- 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))
Greenlet
from greenlet import greenlet def eat(name):
print('%s eat 1' %name)
g2.switch('egon')
print('%s eat 2' %name)
g2.switch()
def play(name):
print('%s play 1' %name)
g1.switch()
print('%s play 2' %name) g1=greenlet(eat)
g2=greenlet(play) g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要
单纯切换,io阻塞无用
Gevent介绍
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
记得打猴子补丁
from gevent import monkey;monkey.patch_all() import gevent
import time
def eat():
print('eat food 1')
time.sleep()
print('eat food 2') def play():
print('play 1')
time.sleep()
print('play 2') g1=gevent.spawn(eat)
g2=gevent.spawn(play_phone)
gevent.joinall([g1,g2])
print('主')
from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time def get_page(url):
print('GET: %s' %url)
response=requests.get(url)
if response.status_code == :
print('%d bytes received from %s' %(len(response.text),url)) start_time=time.time()
gevent.joinall([
gevent.spawn(get_page,'https://www.python.org/'),
gevent.spawn(get_page,'https://www.yahoo.com/'),
gevent.spawn(get_page,'https://github.com/'),
])
stop_time=time.time()
print('run time is %s' %(stop_time-start_time))
协程爬虫
from gevent import monkey;monkey.patch_all()
from socket import *
import gevent #如果不想用money.patch_all()打补丁,可以用gevent自带的socket
# from gevent import socket
# s=socket.socket() def server(server_ip,port):
s=socket(AF_INET,SOCK_STREAM)
s.setsockopt(SOL_SOCKET,SO_REUSEADDR,)
s.bind((server_ip,port))
s.listen()
while True:
conn,addr=s.accept()
gevent.spawn(talk,conn,addr) def talk(conn,addr):
try:
while True:
res=conn.recv()
print('client %s:%s msg: %s' %(addr[],addr[],res))
conn.send(res.upper())
except Exception as e:
print(e)
finally:
conn.close() if __name__ == '__main__':
server('127.0.0.1',)
协程服务端
from threading import Thread
from socket import *
import threading def client(server_ip,port):
c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
c.connect((server_ip,port)) count=
while True:
c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
msg=c.recv()
print(msg.decode('utf-8'))
count+=
if __name__ == '__main__':
for i in range():
t=Thread(target=client,args=('127.0.0.1',))
t.start()
多线程并发多个客户端
多线程+协程!!
关键:加入猴子补丁monkey后,所有子线程遇到IO会阻塞,所有程序卡住不运行
解决方法:设置
from gevent import monkey;monkey.patch_all(thread=False) https://stackoverflow.com/questions/9192539/using-gevent-monkey-patching-with-threading-makes-thread-work-serially
concurrent.futures进线程池和协程的更多相关文章
- 并发编程 --进、线程池、协程、IO模型
内容目录: 1.socket服务端实现并发 2.进程池,线程池 3.协程 4.IO模型 1.socket服务端实现并发 # 客户端: import socket client = socket.soc ...
- 并发编程(六)——进程/线程池、协程、gevent第三方库
进程/线程池.协程.gevent第三方库 一.进程/线程池 1.进程池 (1)什么是进程池 如果需要创建的子进程数量不大,可以直接利用multiprocess中的Process来创建.但是当需要创建上 ...
- 进程池与线程池、协程、协程实现TCP服务端并发、IO模型
进程池与线程池.协程.协程实现TCP服务端并发.IO模型 一.进程池与线程池 1.线程池 ''' 开进程开线程都需要消耗资源,只不过两者比较的情况下线程消耗的资源比较少 在计算机能够承受范围内最大限度 ...
- python day 20: 线程池与协程,多进程TCP服务器
目录 python day 20: 线程池与协程 2. 线程 3. 进程 4. 协程:gevent模块,又叫微线程 5. 扩展 6. 自定义线程池 7. 实现多进程TCP服务器 8. 实现多线程TCP ...
- python3下multiprocessing、threading和gevent性能对比----暨进程池、线程池和协程池性能对比
python3下multiprocessing.threading和gevent性能对比----暨进程池.线程池和协程池性能对比 标签: python3 / 线程池 / multiprocessi ...
- Python 37 进程池与线程池 、 协程
一:进程池与线程池 提交任务的两种方式: 1.同步调用:提交完一个任务之后,就在原地等待,等任务完完整整地运行完毕拿到结果后,再执行下一行代码,会导致任务是串行执行 2.异步调用:提交完一个任务之后, ...
- 并发编程(六)--进程/线程池、协程、gevent第三方库
一.进程/线程池 1.进程池 (1)什么是进程池 如果需要创建的子进程数量不大,可以直接利用multiprocess中的Process来创建.但是当需要创建上百个或上千个,手动创建就较为繁琐,这时就可 ...
- python系列之 - 并发编程(进程池,线程池,协程)
需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...
- python-进程池与线程池,协程
一.进程池与线程池 实现并发的手段有两种,多线程和多进程.注:并发是指多个任务看起来是同时运行的.主要是切换+保存状态. 当我们需要执行的并发任务大于cpu的核数时,我们需要知道一个操作系统不能无限的 ...
随机推荐
- ES5新增数组方法
forEach/map every/some indexOf/lastIndexOf filter reduce Array.isArray
- LDAP服务器的概念和原理简单介绍
LDAP服务器的概念和原理简单介绍 1. 目录服务 目录是一个为查询.浏览和搜索而优化的专业分布式数据库,它呈树状结构组织数据,就好象Linux/Unix系统中的文件目录一样.目录数据库和关系数据库不 ...
- yii 分页查询
控制器 <?php namespace backend\controllers; use app\models\Comment; use app\models\Commentstatus; us ...
- Webstorm/IntelliJ Idea 过期破解方法
一.Webstorm过期破解方法 如下图,WebStorm过期了,每次都是用30分钟,重新打开. 解决方法: 注册时,在打开的License Activation窗口中选择“License serve ...
- 【Spark Java API】broadcast、accumulator
转载自:http://www.jianshu.com/p/082ef79c63c1 broadcast 官方文档描述: Broadcast a read-only variable to the cl ...
- VUE简单组件通信
[x] 1.prop组件通信 1.简单理解 2.多层嵌套 [x] 2.使用ref进行组件通信 [x] 3.$emit组件通信 1.prop组件通信 1.简单理解 有点类似于应式的感觉,我不管你要不要只 ...
- Docker的一些概念
Docker的一些概念 2.1 什么是Docker? 说实话关于Docker是什么并太好说,下面我通过四点向你说明Docker到底是个什么东西. Docker 是世界领先的软件容器平台. Docker ...
- QT使用SQLite
在QT的widget中用tableview显示sqlite数据库表中的内容. 用QTcreator创建一个基于Widget类的窗口,再拖一个tableview到widget中,保存. 1.在widge ...
- 【Json】Jackson将json转换成泛型List
Jackson将json转换成泛型List 获取泛型类型 /** * 获取泛型类型 * * @return */ protected Class<T> getGenericsType() ...
- ElasticSearch 5.0.0 安装部署常见错误或问题
1.ERROR: bootstrap checks failed [1]: max file descriptors [65535] for elasticsearch process is too ...