大数据时代,基于单机的建模很难满足企业不断增长的数据量级的需求,开发者需要使用分布式的开发方式,在集群上进行建模。而单机和分布式的开发代码有一定的区别,本文就将为开发者们介绍,基于TensorFlow进行分布式开发的两种方式,帮助开发者在实践的过程中,更好地选择模块的开发方向。


基于TensorFlow原生的分布式开发

分布式开发会涉及到更新梯度的方式,有同步和异步的两个方案,同步更新的方式在模型的表现上能更快地进行收敛,而异步更新时,迭代的速度则会更加快。两种更新方式的图示如下:

同步更新流程

(图片来源:TensorFlow:Large-Scale Machine Learning on Heterogeneous Distributed Systems)

异步更新流程

(图片来源:TensorFlow:Large-Scale Machine Learning on Heterogeneous Distributed Systems)

TensorFlow是基于ps、work 两种服务器进行分布式的开发。ps服务器可以只用于参数的汇总更新,让各个work进行梯度的计算。


基于TensorFlow原生的分布式开发的具体流程如下:

首先指定ps 服务器启动参数 –job_name=ps:

python distribute.py --ps_hosts=192.168.100.42:2222 --worker_hosts=192.168.100.42:2224,192.168.100.253:2225 --job_name=ps --task_index=0

接着指定work服务器参数(启动两个work 节点) –job_name=work2:

python distribute.py --ps_hosts=192.168.100.42:2222 --worker_hosts=192.168.100.42:2224,192.168.100.253:2225 --job_name=worker --task_index=0
python distribute.py --ps_hosts=192.168.100.42:2222 --worker_hosts=192.168.100.42:2224,192.168.100.253:2225 --job_name=worker --task_index=1

之后,上述指定的参数 worker_hosts ps_hosts job_name task_index 都需要在py文件中接受使用:

tf.app.flags.DEFINE_string("worker_hosts", "默认值", "描述说明")

接收参数后,需要分别注册ps、work,使他们各司其职:

ps_hosts = FLAGS.ps_hosts.split(",")
worker_hosts = FLAGS.worker_hosts.split(",")
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
server = tf.train.Server(cluster,job_name=FLAGS.job_name,task_index=FLAGS.task_index) issync = FLAGS.issync
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster)):

继而更新梯度。

(1)同步更新梯度:

rep_op = tf.train.SyncReplicasOptimizer(optimizer,
replicas_to_aggregate=len(worker_hosts),
replica_id=FLAGS.task_index,
total_num_replicas=len(worker_hosts),
use_locking=True)
train_op = rep_op.apply_gradients(grads_and_vars,global_step=global_step)
init_token_op = rep_op.get_init_tokens_op()
chief_queue_runner = rep_op.get_chief_queue_runner()

(2)异步更新梯度:

train_op = optimizer.apply_gradients(grads_and_vars,global_step=global_step)

最后,使用tf.train.Supervisor 进行真的迭代

另外,开发者还要注意,如果是同步更新梯度,则还需要加入如下代码:

sv.start_queue_runners(sess, [chief_queue_runner])
sess.run(init_token_op)

需要注意的是,上述异步的方式需要自行指定集群IP和端口,不过,开发者们也可以借助TensorFlowOnSpark,使用Yarn进行管理。


基于TensorFlowOnSpark的分布式开发

作为个推面向开发者服务的移动APP数据统计分析产品,个数所具有的用户行为预测功能模块,便是基于TensorFlowOnSpark这种分布式来实现的。基于TensorFlowOnSpark的分布式开发使其可以在屏蔽了端口和机器IP的情况下,也能够做到较好的资源申请和分配。而在多个千万级应用同时建模的情况下,集群也有良好的表现,在sparkUI中也能看到相对应的资源和进程的情况。最关键的是,TensorFlowOnSpark可以在单机过度到分布式的情况下,使代码方便修改,且容易部署。

基于TensorFlowOnSpark的分布式开发的具体流程如下:

首先,需要使用spark-submit来提交任务,同时指定spark需要运行的参数(–num-executors 6等)、模型代码、模型超参等,同样需要接受外部参数:

parser = argparse.ArgumentParser()
parser.add_argument("-i", "--tracks", help="数据集路径")
args = parser.parse_args()

之后,准备好参数和训练数据(DataFrame),调用模型的API进行启动。

其中,soft_dist.map_fun是要调起的方法,后面均是模型训练的参数。

estimator = TFEstimator(soft_dist.map_fun, args) \
.setInputMapping({'tracks': 'tracks', 'label': 'label'}) \
.setModelDir(args.model) \
.setExportDir(args.serving) \
.setClusterSize(args.cluster_size) \
.setNumPS(num_ps) \
.setEpochs(args.epochs) \
.setBatchSize(args.batch_size) \
.setSteps(args.max_steps)
model = estimator.fit(df)

接下来是soft_dist定义一个 map_fun(args, ctx)的方法:

def map_fun(args, ctx):
...
worker_num = ctx.worker_num # worker数量
job_name = ctx.job_name # job名
task_index = ctx.task_index # 任务索引
if job_name == "ps": # ps节点(主节点)
time.sleep((worker_num + 1) * 5)
cluster, server = TFNode.start_cluster_server(ctx, 1, args.rdma)
num_workers = len(cluster.as_dict()['worker'])
if job_name == "ps":
server.join()
elif job_name == "worker":
with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % task_index, cluster=cluster)):

之后,可以使用tf.train.MonitoredTrainingSession高级API,进行模型训练和预测。


总结

基于TensorFlow的分布式开发大致就是本文中介绍的两种情况,第二种方式可以用于实际的生产环境,稳定性会更高。

在运行结束的时候,开发者们也可通过设置邮件的通知,及时地了解到模型运行的情况。

同时,如果开发者使用SessionRunHook来保存最后输出的模型,也需要了解到,框架代码中的一个BUG,即它只能在规定的时间内保存,超出规定时间,即使运行没有结束,程序也会被强制结束。如果开发者使用的版本是未修复BUG的版本,则要自行处理,放宽运行时间。

TensorFlow分布式实践的更多相关文章

  1. TensorFlow 分布式实践

    此wiki主要介绍分布式环境使用的一些条件,一直所要注意的内容: 确保在此之前阅读过TensorFlow for distributed 1.集群描述 当前tensorflow 的版本(0.8.0), ...

  2. tensorflow分布式训练

    https://blog.csdn.net/hjimce/article/details/61197190  tensorflow分布式训练 https://cloud.tencent.com/dev ...

  3. [源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑

    [源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑 目录 [源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑 1. 总述 2. 接口 2.1 ...

  4. 基于Python玩转人工智能最火框架 TensorFlow应用实践

    慕K网-299元-基于Python玩转人工智能最火框架 TensorFlow应用实践 需要联系我,QQ:1844912514

  5. 【原创 深度学习与TensorFlow 动手实践系列 - 4】第四课:卷积神经网络 - 高级篇

    [原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleN ...

  6. 【原创 深度学习与TensorFlow 动手实践系列 - 3】第三课:卷积神经网络 - 基础篇

    [原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实 ...

  7. Python玩转人工智能最火框架 TensorFlow应用实践 ☝☝☝

    Python玩转人工智能最火框架 TensorFlow应用实践 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 全民人工智能时代,不甘心只做一个旁观者,那就现在 ...

  8. java 分布式实践

    java 分布式实践 spring boot cloud实践 开源的全链路跟踪很多,比如 Spring Cloud Sleuth + Zipkin,国内有美团的 CAT 等等. 其目的就是当一个请求经 ...

  9. 基于Python玩转人工智能最火框架 TensorFlow应用实践✍✍✍

    基于Python玩转人工智能最火框架  TensorFlow应用实践 随着 TensorFlow 在研究及产品中的应用日益广泛,很多开发者及研究者都希望能深入学习这一深度学习框架.而在昨天机器之心发起 ...

随机推荐

  1. Ubuntu16.04上用源代码安装ICE

    ubuntu16.04上用源代码安装ICE

  2. ssh无法登录,提示Connection closing...Socket close.

    一.问题无法ssh直接连接到服务器 [C:\~]$ ssh 192.168.7.77 Connecting to ... Connection established. To escape to lo ...

  3. scala学习——(1)scala基础(上)

    scala> val x = 1 x: Int = 1 一.值与变量 值(val):赋值后不可变 val值名称:类型 = XXX 变量(var):赋值后可以改变  var变量名称:类型 = XX ...

  4. Spring Boot (十三): Spring Boot 小技巧

    一些 Spring Boot 小技巧.小知识点 初始化数据 我们在做测试的时候经常需要初始化导入一些数据,如何来处理呢?会有两种选择,一种是使用 Jpa,另外一种是 Spring JDBC .两种方式 ...

  5. Android中级教程之----Log图文详解(Log.v,Log.d,Log.i,Log.w,Log.e)

    在Android群里,经常会有人问我,Android Log是怎么用的,今天我就把从网上以及SDK里东拼西凑过来,让大家先一睹为快,希望对大家入门Android Log有一定的帮助. android. ...

  6. Asp.Net_Session跟Cookie的记住登陆名

    最近在做ASP.NET的项目时,接触到了登陆权限模块,所有总结了一下登陆时用到的知识和方法技巧. 如图说明:实现的效果如图,由于验证码验证比较简单这里就不介绍了 首先用代码生成器生成项目,以三层为例进 ...

  7. Docker部署Registry私有镜像库

    拉取镜像 docker pull registry:2.6.2   生成账号密码文件,这里采用htpasswd方式认证 docker run --rm --entrypoint htpasswd re ...

  8. [算法总结] 6 道题搞定 BAT 面试——堆栈和队列

    本文首发于我的个人博客:尾尾部落 0. 基础概念 栈:后进先出(LIFO) 队列:先进先出(FIFO) 1. 栈的 java 实现 import java.util.Arrays; public cl ...

  9. 利用KMP算法解决串的模式匹配问题(c++) -- 数据结构

    题目: 7-1 串的模式匹配 (30 分) 给定一个主串S(长度<=10^6)和一个模式T(长度<=10^5),要求在主串S中找出与模式T相匹配的子串,返回相匹配的子串中的第一个字符在主串 ...

  10. 团队week9

    1. Bug bash ▪ How many bugs is found in your bug bash? Bug很多,就前端的用户管理部分发现的bug就有14个. 2. Write a blog ...