CDH大数据平台实施经验总结2016(转载)

2016年负责实施了一个生产环境的大数据平台,用的CDH平台+docker容器的方式,过了快半年了,现在把总结发出来。

1. 平台规划注意事项

1.1 业务数据全部存储在datanode上面,所以datanode的存储空间必须足够大,且每个datanode的存储空间尽量保持一致。

1.2 管理节点/namenode对存储空间要求不高,主要存储各计算节点datanode的元数据信息,以3个datanode为例,每个datanode存储2T的数据,namenode才耗费80G的空间。

1.3 由于hadoop有数据副本机制,默认为3个副本,因此datanode节点,系统盘做raid 1,数据盘做raid 0;namenode做raid 5,不管系统盘还是数据盘,都可以直接更换,保证数据不丢失;

1.4 计算节点datanode依靠的是数量优势,除了存储空间足够大之外,对机器配置要求不高,但是安装spark和impala的话对内存的要求较高,单节点2T的数据配置64G的单机内存有点吃力。

1.5 但是namenode要跟所有的datanode交互,接收处理各种请求,对机器配置要求较高,以的测试数据来看,namenode存放80G的元数据时,64G的内存已经有点紧张了,开始使用交换内存了。

1.6 namenode和Secondary namenode需要各自独立的两个节点,即相互独立部署,这样即使namenode机器挂了,也可以手动从secondary namenode恢复一下。在Hadoop 2高可靠性下可以配置两个namenode,保证一个namenode出现问题可以自动切换至另一个。

1.7 由于secondary namenode的是周期性的合并日志文件,因此单独部署时对机器压力较小,空间使用也只勉强是namenode的一半,因此可以把诸如hive/hbase等的服务器端安装在snn所在的服务器上,这样可以使机器资源得到最大化利用。

1.8 hdfs空间不够开始报警,但是df –h命令下查看就会发现其实空间余额还有好几T,这种情况是由于non dfs used空间膨胀导致的,non dfs used和remaining一起构成了hdfs的可用空间容量,两者呈现此消彼长的关系。Non dfs used从字面理解来看是非hadoop文件占用的空间,实际上是某些文件删除之后,hadoop的组件没有释放对其引用导致的,从的情况来看,单个节点2T的数据运行一个月会产生600G的non dfs used空间,最笨的办法就是重启CDH,一下子占用就到1G以下了。

2. docker中没有CDH运行环境

项目采取docker来发布、运行程序,docker实例无状态,停止服务即销毁,无法直接安装软件,而程序采用命令行的方式编写,必须依赖CDH环境运行,两者出现矛盾,三种方案解决: 
2.1.所有程序基于API来开发,改程序 
未采用,一来程序改动量太大,影响里程碑计划;二来CDH的有些组件对命令行的支持比对API的支持要好,比如sqoop。 
2.2.制作一个CDH的镜像,不改程序 
未采用,需要开发人员重新部署、学习docker技术,测试程序,成本较大; 
2.3.用jsch方式远程连接CDH节点来执行命令,改程序 
已采用,程序改动量较小,半天即可完成,已测试通过

3. sqoop注意事项

3.1.Oracle中是区分用户的,一般给sqoop提供的账号都是Oracle中的查询账号,通过同义词等形式来查询数据,所以sqoop命令中一定要带上用户,此用户跟Oracle提供给sqoop查询权限用户名不同(除非给sqoop提供的是生产库的业务原始账号,生产数据表都在此账号下面),sqoop命令中的账号是源数据表的owner用户,只有这样才能通过查询权限的用户去抽取同义词等模式的生产数据。

3.2.由于一般给sqoop提供的账号都是Oracle中的查询账号,如果需要通过访问Oracle的数据字典来获取源数据表结构,请使用dba_开头的系统表,因为源数据表结构的信息是在业务表的owner用户下面的user_开头的系统表中才有,查询用户下面的user_表中没有。需要的dba_开头的表包括:dba_tab_comments,dba_cons_columns,dba_constraints,dba_ind_columns ,dba_tab_columns,dba_col_comments

3.3. sqoop命令中,源数据库为rac集群的情况下,连接数据库某个节点时,命令中Oracle IP、端口号、SID之间一律使用冒号,而不是斜杠,只有在非集群模式或者scan ip的情况下才可以使用斜杠。

3.4.sqoop成功执行需要驱动包,在以下目录添加2个jar包/opt/cloudera/parcels/CDH-5.5.2-1.cdh5.5.2.p0.4/lib/sqoop/lib: 
mysql-connector-java-5.1.38-bin.jar 
ojdbc14-10.2.0.4.jar

3.5.sqoop命令中并发参数 –m 属性,一定要放在table属性之后,否则命令无法识别

3.6.采用jsch远程调用模式时,在sqoop命令没有执行完成之前不能关闭远程连接,否则即使已经提交了yarn也会中断执行。

3.7.sqoop默认会把Oracle中number和date类型转换为double和string类型,需要在sqoop命令中指定一下类型的转换规则。

3.8 sqoop增量抽取时,where条件使用双引号而非单引号,在Java代码远程调用ssh时,尽量使用between and,否则必须得转义<、>才能使用。

3.9 sqoop先创建表,后插入数据时容易跟对应的字段错位,需要设置分隔符参数 –fields-terminated-by “\001”,另外插入数据的顺序一定要与创建表的字段的顺序一致。

5. spark与docker容器结合

5.1.在程序中采用URL方式连接spark的master节点时必须用别名,IP地址无效。

5.2.应用部署于docker容器中,调用spark组件的时候应用会莫名的重启,后来排查发现是docker里需要维护hosts,不然 new javaSparkContext()会导致应用服务重启。但由于docker机制决定了,即使注册了也无法持久化存在,应用重启之后就还原了,所以直接在Java程序中完成,应用启动的时候注册到docker的hosts中。

5.3.应用部署于docker之中,调用spark组件的时候,spark的master和worker节点需要返回消息给sparkdriver,即需要访问部署应用的docker容器,如下图所示: 
 
而docker的原有机制决定了,只能由部署于docker中的应用去访问集群中的物理节点,而外面的物理节点无法访问docker中的私网。 
此外还有2个限制条件,第一:sparkdriver不支持映射地址和端口,必须是应用程序所在的IP;第二:docker容器的私网地址随着应用重启而在某个网段变化,如果固定为物理IP,将无限制的浪费物理IP地址,客户不会同意; 
最终通过开启docker服务器的路由转发功能,在spark的master和worker节点上配置静态的路由信息得以实现由物理IP节点去访问docker容器内部的私网地址的功能,也就是说开启docker服务器的路由转发功能之后,其他机器发往172私网号段的请求,全部发给docker服务器。 
命令:ip route add <目标网段>/<掩码> via

6. hive操作注意事项

6.1 hive中sql没有像Oracle那样进行自动优化,sql的优化非常重要,比如:同一业务逻辑,采用join方式一分钟搞定,但是如果采用等值连接的方式,2小时都没出结果。

6.2 hive中不支持join…on…or的形式,可以转换成union all的方式,此外hive也不支持on后面不相等的条件,只支持相等条件。

6.3 hive的存储方式一般有textfile、sequencefile、rcfile等三种,其中textfile即是文本格式,hive的默认存储格式,数据不做压缩,磁盘开销大,数据解析开销大,查询的效率最低,可以直接存储,但加载数据的效率最高;sequencefile,是Hadoop提供的一种二进制文件格式是Hadoop支持的标准文件格式,可压缩、可切片,查询效率高,但需要通过text文件转化来加载;TEXTFILE和SEQUENCEFILE的存储格式都是基于行存储的,而rcfile 是一种行列存储相结合的存储方式,先将数据按行分块再按列式存储,保证同一条记录在一个块上,避免读取多个块,有利于数据压缩和快速进行列存储,具备相当于行存储的数据加载和负载适应能力,扫描表时避免不必要的列读取,而使用列维度的压缩,能有效提升存储空间利用率,因此存储空间最小,查询的效率最高 ,但需要通过text文件转化来加载,加载的速度最低,但是由于hdfs一般都是一次写入多次读取,所以加载的速度较慢可以接受;目前大数据平台中hive的存储格式采用的是普通的textfile,后续还有很大的优化提示空间。

7. CM管理页面操作

7.1 有组件报错或者无法启动时,先查看相应日志,如果error的地方是关于时间的,ntp同步服务器时间,然后重启该组件;如果error的地方是关于客户端连接问题的,重启hostMonitor服务,如果不行就重启agent服务;绝大多数情况下通过上述两步就可成功,极少数情况下,那就删除角色重新添加该服务,必要的时候可以调整一下该服务的各种角色所在的节点位置。

7.2 如果服务器硬盘故障更换硬盘之后,各种组件启动报错,提示无法连接到cm,如果重启hostMonitor服务无效的话,可以先把该节点移除出服务器,然后配置角色模板,再添加进集群中来。

7.3 CM主机页面中会时常显示物理内存还有剩余,但是交换内存却用了好多,导致CDH报警;这个从Linux机制的角度来看,可以忽略不管,Linux系统会不时的进行页面交换操作,以保持尽可能多的空闲物理内存,即使并没有什么需要内存,Linux也会交换出暂时不用的内存页面,这样的可以避免等待交换所需的时间。如果非要消除这个报警,那就调整Linux中swappiness参数的值为0即可。

CM记录-CDH大数据平台实施经验总结2016(转载)的更多相关文章

  1. 基于Hadoop的大数据平台实施记——整体架构设计[转]

    http://blog.csdn.net/jacktan/article/details/9200979 大数据的热度在持续的升温,继云计算之后大数据成为又一大众所追捧的新星.我们暂不去讨论大数据到底 ...

  2. 基于Hadoop的大数据平台实施记——整体架构设计

    大数据的热度在持续的升温,继云计算之后大数据成为又一大众所追捧的新星.我们暂不去讨论大数据到底是否适用于您的组织,至少在互联网上已经被吹嘘成无所不能的超级战舰.好像一夜之间我们就从互联网时代跳跃进了大 ...

  3. CDH 大数据平台搭建

    一.概述 Cloudera版本(Cloudera’s Distribution Including Apache Hadoop,简称“CDH”),基于Web的用户界面,支持大多数Hadoop组件,包括 ...

  4. CM+CDH大数据平台

    我这里搭建的是3节点,centos6.5的静态ip ,ssh免密码登录,防火墙关闭,时钟同步等等一些准备工作我这里就不多说了 我们可以进官网看看 https://www.cloudera.com/ 我 ...

  5. CDH大数据平台搭建终极版

    经过无数次的失败,终于将CDH安装到两台普通的笔记本电脑上,主要失败原因有以下几点: 不熟悉安装过程,官方给出的安装方法有三种,所以都尝试了一遍,浪费了大量时间,所以有时候方法多不见得是一件好事. 安 ...

  6. 大数据 -- Cloudera Manager(简称CM)+CDH构建大数据平台

    一.Cloudera Manager介绍 Cloudera Manager(简称CM)是Cloudera公司开发的一款大数据集群安装部署利器,这款利器具有集群自动化安装.中心化管理.集群监控.报警等功 ...

  7. product of大数据平台搭建------CM 和CDH安装

    一.安装说明 CM是由cloudera公司提供的大数据组件自动部署和监控管理工具,相应的和CDH是cloudera公司在开源的hadoop社区版的基础上做了商业化的封装的大数据平台. 采用离线安装模式 ...

  8. 朝花夕拾之--大数据平台CDH集群离线搭建

    body { border: 1px solid #ddd; outline: 1300px solid #fff; margin: 16px auto; } body .markdown-body ...

  9. CDH构建大数据平台-使用自建的镜像地址安装Cloudera Manager

    CDH构建大数据平台-使用自建的镜像地址安装Cloudera Manager 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   一.搭建CM私有仓库 详情请参考我的笔记: http ...

随机推荐

  1. Visual Studio控制台程序输出窗口一闪而过的解决方法

    转载大牛的博客,自己也遇到了类似的问题,解决方法很详细,也很管用   刚接触 Visual Studio的时候大多数人会写个Hello World的程序试一下,有的人会发现执行结束后输出窗口会一闪而过 ...

  2. Unity 图文重现官方教程视频 2droguelike 第一集

    初衷: 本人初学Unity,四处收集了一些视频和教材,学习和摸索了一段时间, 我发现官网教程简单易上手,只不过他是英文讲解不方便,我就想把他翻译翻译吧, 然后我又发现看视频学习要暂停回放好多遍,麻烦, ...

  3. 原生 JavaScript 实现 AJAX、JSONP

    相信大多数前端开发者在需要与后端进行数据交互时,为了方便快捷,都会选择JQuery中封装的AJAX方法,但是有些时候,我们只需要JQuery的AJAX请求方法,而其他的功能用到的很少,这显然是没必要的 ...

  4. 1082. Read Number in Chinese (25)-字符串处理

    题意就是给出9位以内的数字,按照汉子的读法读出来. 读法请看下方的几个例子: 5 0505 0505 伍亿零伍佰零伍万零伍佰零伍 5 5050 5050 伍亿伍仟零伍拾万伍仟零伍拾  (原本我以为这个 ...

  5. kafka学习总结之集群部署和zookeeper

    1.  集群部署 kafka集群的瓶颈主要在网络和磁盘上:kafka依赖于zookeeper,zookeeper集群的节点采用奇数个,3个节点允许一个节点失败,5个节点允许2个节点失败. 图 1 ka ...

  6. [Week17] 个人阅读作业

      个人阅读作业Week17 reading buaa software   解决的问题 这是提出问题的博客链接:http://www.cnblogs.com/SivilTaram/p/4830893 ...

  7. RYU 灭龙战 second day(内容大部分引自网络)

    RYU 灭龙战 second day(内容大部分引自网络) 写好的markdown重启忘了保存...再写一次RLG 巨龙的稀有装备-RYU代码结构 RYU控制器代码结构的总结 RYU入门教程 RYU基 ...

  8. 黄金分割点(第五周 c语言版)

    在上一周,学习其他课程的同时,用C语言编写了黄金分割点小游戏.因为要做界面需要mfc,当时学的时候还做了个简单的计算器.目前c++的知识忘的差不多了,所以就先用C语言来实现算法.打算接下来的一周复习c ...

  9. ElasticSearch 2 (36) - 信息聚合系列之显著项

    ElasticSearch 2 (36) - 信息聚合系列之显著项 摘要 significant_terms(SigTerms)聚合与其他聚合都不相同.目前为止我们看到的所有聚合在本质上都是简单的数学 ...

  10. Python爬虫:抓取新浪新闻数据

    案例一 抓取对象: 新浪国内新闻(http://news.sina.com.cn/china/),该列表中的标题名称.时间.链接. 完整代码: from bs4 import BeautifulSou ...