传送门

这次fftfftfft乱搞居然没有被卡常?

题目简述:给你nnn个数,每三个数ai,aj,ak(i&lt;j&lt;k)a_i,a_j,a_k(i&lt;j&lt;k)ai​,aj​,ak​(i<j<k)组成的所有和以及这些和出现的次数。

读完题直接让我联想到了昨天写过的一道用fftfftfft优化点分治合并的题

,这不是差不多嘛?

只是这一次的容斥要麻烦一些。

我们令原数列转化成的系数序列为{an}\{a_n\}{an​}

那么如果允许重复答案就应该是an3a_n^3an3​

然后展开式子。

我们需要容斥掉的就是有3个数相同的和有2个数相同的。

这个时候已经可以用fftfftfft了。

但是还可以进一步优化。

如何优化?

观察到有两个数相同的其实可以再用一次容斥求出。

因为两个数相同的个数是等于至少两个数相同的个数扣去有三个数相同的个数的。

这样可以优化更多常数。

剩下就是fftfftfft的事啦。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
	int ans=0,w=1;
	char ch=getchar();
	while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans*w;
}
typedef long long ll;
const int N=(1<<17)+5,delta=20000;
const double pi=acos(-1.0);
struct Complex{
	double x,y;
	inline Complex operator+(const Complex&b){return (Complex){x+b.x,y+b.y};}
	inline Complex operator-(const Complex&b){return (Complex){x-b.x,y-b.y};}
	inline Complex operator*(const Complex&b){return (Complex){x*b.x-y*b.y,y*b.x+x*b.y};}
	inline Complex operator/(const double&b){return (Complex){x/b,y/b};}
}a[N],b[N],c[N];
int n,lim,tim,A[N],B[N],C[N],pos[N];
inline void fft(Complex *a,int type){
	for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
	for(ri mid=1;mid<lim;mid<<=1){
		Complex wn=(Complex){cos(pi/mid),type*sin(pi/mid)};
		for(ri j=0,len=mid<<1;j<lim;j+=len){
			Complex w=(Complex){1,0};
			for(ri k=0;k<mid;++k,w=w*wn){
				Complex a0=a[j+k],a1=a[j+k+mid]*w;
				a[j+k]=a0+a1,a[j+k+mid]=a0-a1;
			}
		}
	}
	if(type==-1)for(ri i=0;i<lim;++i)a[i]=a[i]/lim;
}
inline void init(){
	lim=1<<17,tim=17;
	for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
}
int main(){
	freopen("lx.in","r",stdin);
	n=read(),init();
	for(ri i=1,val;i<=n;++i)val=read()+delta,++A[val],++B[val*2],++C[val*3];
	for(ri i=0;i<lim;++i)a[i].x=A[i],b[i].x=B[i],c[i].x=C[i];
	fft(a,1),fft(b,1);
	for(ri i=0;i<lim;++i)c[i]=a[i]*(a[i]*a[i]-(Complex){3,0}*b[i]);
	fft(c,-1);
	for(ri i=0;i<lim;++i){
		ll cnt=((ll)(c[i].x+0.5)+2*C[i])/6;
		if(cnt)cout<<i-3*delta<<" : "<<cnt<<'\n';
	}
	return 0;
}

2018.11.18 spoj Triple Sums(容斥原理+fft)的更多相关文章

  1. SPOJ Triple Sums(FFT+容斥原理)

    # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...

  2. SPOJ TSUM Triple Sums(FFT + 容斥)

    题目 Source http://www.spoj.com/problems/TSUM/ Description You're given a sequence s of N distinct int ...

  3. 2018.12.31 bzoj3771: Triple(生成函数+fft+容斥原理)

    传送门 生成函数经典题. 题意简述:给出nnn个数,可以从中选1/2/31/2/31/2/3个,问所有可能的和对应的方案数. 思路: 令A(x),B(x),C(x)A(x),B(x),C(x)A(x) ...

  4. 2018.11.18 bzoj2194: 快速傅立叶之二(fft)

    传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...

  5. SPOJ - Triple Sums

    [传送门] FFT第一题! 构造多项式 $A(x) = \sum x ^ {s_i}$. 不考虑题目中 $i < j < k$ 的条件,那么 $A^3(x)$ 每一项对应的系数就是答案了. ...

  6. 2018.11.24 spoj New Distinct Substrings(后缀数组)

    传送门 双倍经验(弱化版本) 考虑求出来heightheightheight数组之后用增量法. 也就是考虑每增加一个heightheightheight对答案产生的贡献. 算出来是∑∣S∣−heigh ...

  7. 2018.11.18 Sturts2配置详解&常量配置进阶

    1.基于struts.xml 的节点参数配置 package节点 action节点 result节点 include节点 2.struts常量配置以及如何修改为自己的想要的配置 2.1struts默认 ...

  8. OI生涯回忆录 2018.11.12~2019.4.15

    上一篇:OI生涯回忆录 2017.9.10~2018.11.11 一次逆风而行的成功,是什么都无法代替的 ………… 历经艰难 我还在走着 一 NOIP之后,全机房开始了省选知识的自学. 动态DP,LC ...

  9. China Intelligent Office Summit(2018.11.21)

    时间:2018.11.21地点:中关村软件园国际会议中心

随机推荐

  1. 打印低头思故乡 java

    public static void main(String args[][){ char poet[] = str.tocharArray(); int pos = 18; while(true){ ...

  2. Codeforces Beta Round #16 (Div. 2 Only)

    Codeforces Beta Round #16 (Div. 2 Only) http://codeforces.com/contest/16 A 水题 #include<bits/stdc+ ...

  3. 微信小程序开发-rem转换rpx小工具

    实现原理: 对样式进行格式化,然后根据 “rem” 进行拆分,这样就会拆分成一个数组 [str1,str2,str3...,str6], 除了最后一个元素,前边的元素都会以 “rem” 样式的数值结尾 ...

  4. 【Android端 adb相关】adb相关总结

    一.什么是adb? adb的全称是:Android Debug Bridge,adb命令的构成是三部分,分别是:服务器.客户端.后台程序: (1)客户端:一个在PC上运行的客户端.可以通过shell端 ...

  5. 【nginx】大文件下载

    nginx自带文件读取功能,而且实现地很好. 比如直接读取txt文件,png图片等,用chrome可以直接获取到内容. 但是对于很大的文件,比如有2个G的视频,nginx如何吐出2G的内容呢? 实验: ...

  6. 使用python语言计算n的阶乘

    计算“1x2x3x4” def factorial(n): result = n ,n): result *= i return resultdef main(): print factorial(4 ...

  7. Web API中常用Filter的执行顺序举例讲解

    在WEB Api中,引入了面向切面编程(AOP)的思想,在某些特定的位置可以插入特定的Filter进行过程拦截处理.引入了这一机制可以更好地践行DRY(Don’t Repeat Yourself)思想 ...

  8. mysql lost connection to server during query

    vim /etc/mysql/mysql.conf.d/mysqld.cnf [mysqld]#3600000/1000=3600秒=1小时 wait_timeout =3600000#2G缓冲max ...

  9. localstorage和vue结合使用

    父组件 <template> <div class="hello"> <p>Original message:"{{message}} ...

  10. istio 服务地图

    1.安装 kubectl apply -f install/kubernetes/addons/servicegraph.yam 2.查看安装是否成功kubectl -n istio-system g ...