Acwing-197-阶乘分解(质数)
链接:
https://www.acwing.com/problem/content/199/
题意:
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pi 和 ci 即可。
思路:
对于n!, 考虑1-n的质数, 对于每个质数,pk在n!出现的次数为n/(pk).
计算k时, 会计算k+1,的次数, 所以每个只用加一次.
代码:
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e6+10;
int IsPri[MAXN], Pri[MAXN];
long long Cnt[MAXN];
int pos, n;
void Euler()
{
memset(IsPri, 0, sizeof(IsPri));
memset(Pri, 0, sizeof(Pri));
memset(Cnt, 0, sizeof(Cnt));
IsPri[1] = 1;
pos = 0;
for (int i = 2;i <= n;i++)
{
if (IsPri[i] == 0)
Pri[++pos] = i;
for (int j = 1;j <= pos && Pri[j]*i <= n;j++)
{
IsPri[Pri[j]*i] = 1;
if (i%Pri[j] == 0)
break;
}
}
}
int main()
{
scanf("%d", &n);
Euler();
for (int i = 1;i <= pos;i++)
{
long long tmp = Pri[i];
while (tmp <= n)
{
Cnt[i] += n/tmp;
tmp *= Pri[i];
}
}
for (int i = 1;i <= pos;i++)
printf("%d %lld\n", Pri[i], Cnt[i]);
return 0;
}
Acwing-197-阶乘分解(质数)的更多相关文章
- AcWing 197. 阶乘分解 (筛法)打卡
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi, ...
- Acwing 197. 阶乘分解
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi, ...
- 数论-质数 poj2689,阶乘分解,求阶乘的尾零hdu1124, 求尾零为x的最小阶乘
/* 要求出[1,R]之间的质数会超时,但是要判断[L,R]之间的数是否是素数却不用筛到R 因为要一个合数n的最大质因子不会超过sqrt(n) 所以只要将[2,sqrt(R)]之间的素数筛出来,再用这 ...
- 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m
给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...
- luogu1445 [violet]樱花 阶乘分解
题目大意 求方程$$\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$$的正整数解的组数. 思路 咱们把式子整理得$$xy-(x+y)N!=0$$.$xy$和$x+y$?貌似可 ...
- CH 3101 - 阶乘分解 - [埃筛]
题目链接:传送门 题解: $(1e6)!$ 这种数字,表示都表示不出来,想直接 $O(\sqrt{N})$ 分解质因数这种事情就不要想了. 考虑 $N!$ 的特殊性,这个数字的所有可能包含的质因子,就 ...
- LightOJ 1340 - Story of Tomisu Ghost 阶乘分解素因子
http://www.lightoj.com/volume_showproblem.php?problem=1340 题意:问n!在b进制下至少有t个后缀零,求最大的b. 思路:很容易想到一个数通过分 ...
- LightOJ - 1138 (二分+阶乘分解)
题意:求阶乘尾部有Q(1 ≤ Q ≤ 108)个0的最小N 分析:如果给出N,然后求N!尾部0的个数的话,直接对N除5分解即可(因为尾部0肯定是由5*2构成,那么而在阶乘种,2的因子个数要比5少,所以 ...
- NEU 1173: 这是物理学的奇迹!! 分解质数
1173: 这是物理学的奇迹!! 题目描述 goagain在做物理电学实验时需要一个2Ω的电阻,但是他发现他的实验台上只剩下了3Ω,4Ω,5Ω,6Ω的电阻若干,于是goagain把两个4Ω的电阻并联起 ...
随机推荐
- [AcWing303/304]任务安排2/3
[AcWing303]任务安排2 有 \(N\) 个任务排成一个序列在一台机器上等待执行,它们的顺序不得改变.机器会把这 \(N\) 个任务分成若干批,每一批包含连续的若干个任务.从时刻 \(0\) ...
- oracle导出空表
1.先查询数据库空表 select 'alter table '||table_name||' allocate extent;' from user_tables where num_rows=0 ...
- java集合List解析
作为一个Developer,Java集合类是我们在工作中运用最多的.最频繁的类.相比于数组(Array)来说,集合类的长度可变,更加适合于现代开发需求: Java集合就像一个容器,可以存储任何类型的数 ...
- python+pycharm+PyQt5 图形化界面安装教程
python图形化界面安装教程 配置环境变量 主目录 pip所在目录,及script目录 更新pip(可选) python -m pip install --upgrade pip ps:更新出错一般 ...
- SafeArrayGetUBound(EveryPatientInfo.parray,1,&UBound);
SafeArray在ADO编程中经常使用,它的主要目的是用于automation中的数组型参数的传递.因为在网络环境中,数组是不能直接传递的,而必须将其包装成Safe Array.实质上Safe Ar ...
- jQuery+php+ajax实现无刷新上传文件功能
jQuery+php+ajax实现无刷新上传文件功能,还带有上传进度条动画效果,支持图片.视频等大文件上传. js代码 <script type='text/javascript' src='j ...
- 1-python django的创建
一.Virtualenv(我的python环境是3.7) 1.虚拟环境创建(针对python版本和django的版本不一致的) 输入 pip install virtuallenv ,看到如下信息就是 ...
- 从入门到自闭之Python--MySQL数据库的单表操作
单表查询:select * from 表 where 条件 group by 分组 having 过滤 order by 排序 limit n; 语法: select distinct 字段1,字段2 ...
- RHEL8运维新利器--Cockpit使用方法
在web浏览器中查看服务器并使用鼠标执行系统任务,很容易管理存储.配置网络和检查日志等操作. # 安装cockpit yum -y install cockpit # 启用cockpit system ...
- Swagger学习(一、入门)
简单 入门(效果) SwaggerConfig.class @Configuration //变成配置文件 @EnableSwagger2 //开启swagger2 public class Swag ...