题目描述:

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

示例 1:

输入: coins = [1, 2, 5], amount = 11
输出: 3
解释: 11 = 5 + 5 + 1
示例 2: 输入: coins = [2], amount = 3
输出: -1
说明:
你可以认为每种硬币的数量是无限的。

思路:动态规划(https://leetcode-cn.com/problems/coin-change/solution/dong-tai-gui-hua-suan-fa-si-xiang-by-hikes/

假设你是个土豪,你有1,5,10,20,50,100的钞票,你要凑出666买瓶水喝,依据生活经验,我们一般采取这样的策略:能用100就用100的,否则就用50的,依此类推,在这种策略下,666=100*6 + 50 1 + 10 1 + 51 + 11, 一共用了10张钞票。

这种策略就称为 贪心策略 :贪心策略是在当前情况下做出最好的选择,根据需要凑出的金额来进行贪心,但是,如果我们换一组钞票面值,比如 1, 5, 11,我们要凑出15的时候, 贪心策略就会出错:

15 = 11 * 1 + 1 * 4 (贪心策略)
15 = 5 * 3(正确策略)
贪心策略哪里出错了?
鼠目寸光

重新分析刚刚的例子。w=15时,我们如果取11,接下来就面对w=4的情况;如果取5,则接下来面对w=10的情况。我们发现这些问题都有相同的形式:“给定w,凑出w所用的最少钞票是多少张?” 接下来,我们用f(n)来表示“凑出n所需的最少钞票数量”。  
那么,如果我们取了11,最后的代价(用掉的钞票总数)是多少呢?
  
明显 ,它的意义是:利用11来凑出15,付出的代价等于f(4)加上自己这一张钞票。现在我们暂时不管f(4)怎么求出来。
依次类推,马上可以知道:如果我们用5来凑出15,cost就是f(10) + 1 = 2 + 1 = 3 。 
 那么,现在w=15的时候,我们该取那种钞票呢?当然是各种方案中,cost值最低的那一个
- 取11: cost=f(4)+1=4+1=5 
- 取5:   cost = f(10) + 1 = 2 + 1 = 3
- 取1:  cost = f(14) + 1 = 4 + 1 = 5
显而易见,cost值最低的是取5的方案。我们通过上面三个式子,做出了正确的决策!
这给了我们一个至关重要的启示—— 只与 相关;更确切地说: f(n) 只与 f(n-1),f(n-5),f(n-11) 相关;更确切地说:
f(n)=min{f(n-1),f(n-5),f(n-11)}+1

则数组内面值为为[1,5,11]时:

int [] f = new int[amount + 1], cost;
f[0] = 0;
for(int i = 1; i <= amount; i++){
cost = Integer.MAX_VALUE;
if(i - 1 >=0) cost = Math.min(cost, f[i-1] + 1);
if(i - 5 >=0) cost = Math.min(cost, f[i-5] + 1);
if(i - 11 >=0) cost = Math.min(cost, f[i-11] + 1);
f[i]=cost;
}

代码实现:

class Solution {
public static int coinChange(int[] coins, int amount) { int[] dp = new int[amount + 1];
dp[0] = 0;
for (int i = 1; i <= amount; i++) {
int cost = Integer.MAX_VALUE;
for (int j = 0; j < coins.length; j++) {
if (i - coins[j] >= 0) {
if(dp[i-coins[j]] != Integer.MAX_VALUE) {
cost = Math.min(cost, dp[i - coins[j]] + 1);
}
}
}
dp[i] = cost;
}
return dp[amount] == Integer.MAX_VALUE ? -1 : dp[amount];
}
}

Leetcode题目322.零钱兑换(动态规划-中等)的更多相关文章

  1. LeetCode:322. 零钱兑换

    链接:https://leetcode-cn.com/problems/coin-change/ 标签:动态规划.完全背包问题.广度优先搜索 题目 给定不同面额的硬币 coins 和一个总金额 amo ...

  2. Leetcode题目279.完全平方数(动态规划-中等)

    题目描述: 给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12 输出: 3 解 ...

  3. Java实现 LeetCode 322 零钱兑换

    322. 零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输 ...

  4. Leetcode 322.零钱兑换

    零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: co ...

  5. leetcode 322零钱兑换

    You are given coins of different denominations and a total amount of money amount. Write a function ...

  6. [LeetCode]322. 零钱兑换(DP)

    题目 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: coin ...

  7. Leetcode题目198.打家劫舍(动态规划-简单)

    题目描述: 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给 ...

  8. Leetcode题目287.寻找重复数(中等)

    题目描述: 给定一个包含 n + 1 个整数的数组 nums,其数字都在 1 到 n 之间(包括 1 和 n),可知至少存在一个重复的整数.假设只有一个重复的整数,找出这个重复的数. 示例 1: 输入 ...

  9. Leetcode题目78.子集(回溯-中等)

    题目描述: 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3] 输出: [ [3],   [1] ...

随机推荐

  1. 基于【 centos7】二 || 系统时间与网络时间同步

    # date // 查看系统时间 #hwclock // 查看硬件时间 # yum -y install ntp ntpdate 安装ntpdate工具 # ntpdate cn.pool.ntp.o ...

  2. flask中重定向所涉及的反推:由视图函数反推url

    flask中重定向所涉及的反推:由视图函数反推url 例如有视图index() 反推 url的/default # -*- coding: utf-8 -*- from flask import Fl ...

  3. SmartBinding工作原理分析

    关于kbmMW SmartBinding,我翻译了作者写的几篇文章,其强大的绑定机制,将可视控制与各种数据源灵活绑定在一起,实现了类似DBEdit数据敏感控件的效果,可以及大的减少我们的代码,实现界面 ...

  4. python中yield的用法详解-转载

    原文链接:https://blog.csdn.net/mieleizhi0522/article/details/82142856 ,今天在写python爬虫的时候,循环的时候用到了yield,于是搜 ...

  5. Spring Boot实现自定义注解

    在Spring Boot项目中可以使用AOP实现自定义注解,从而实现统一.侵入性小的自定义功能. 实现自定义注解的过程也比较简单,只需要3步,下面实现一个统一打印日志的自定义注解: 1. 引入AOP依 ...

  6. 全文检索引擎在Django中的使用

    Haystack 1.什么是Haystack Haystack是django的开源全文搜索框架(全文检索不同于特定字段的模糊查询,使用全文检索的效率更高 ),该框架支持Solr,Elasticsear ...

  7. HTTP通过Get请求传递参数时特殊字符被转码的处理方式

    有些符号在URL中是不能直接传递的,如果要在URL中传递这些特殊符号,那么就要使用他们的编码了. 编码的格式为:%加字符的ASCII码,即一个百分号%,后面跟对应字符的ASCII(16进制)码值.例如 ...

  8. 2.session 简介

    2.session 简介 hibernate的执行流程, 创建一个配置对象Configuration,这个配置对象的作用就是用来读取配置文档Hibernate.cfg.xml 获得配置对象的目的是可以 ...

  9. Web应用中的缓存一致性问题

    上篇总结了缓存中出现频率比较高的一些问题,今天详细说说web应用中的缓存一致性问题. 主要说以下三个方面 数据库与缓存中数据不一致出现的情形 发生不一致时的优化思路 如何保证数据库与缓存的一致性 先来 ...

  10. Java8-Lock-No.01

    import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util ...