Leetcode题目322.零钱兑换(动态规划-中等)
题目描述:
给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。 示例 1: 输入: coins = [1, 2, 5], amount = 11
输出: 3
解释: 11 = 5 + 5 + 1
示例 2: 输入: coins = [2], amount = 3
输出: -1
说明:
你可以认为每种硬币的数量是无限的。
思路:动态规划(https://leetcode-cn.com/problems/coin-change/solution/dong-tai-gui-hua-suan-fa-si-xiang-by-hikes/)
假设你是个土豪,你有1,5,10,20,50,100的钞票,你要凑出666买瓶水喝,依据生活经验,我们一般采取这样的策略:能用100就用100的,否则就用50的,依此类推,在这种策略下,666=100*6 + 50 1 + 10 1 + 51 + 11, 一共用了10张钞票。
这种策略就称为 贪心策略 :贪心策略是在当前情况下做出最好的选择,根据需要凑出的金额来进行贪心,但是,如果我们换一组钞票面值,比如 1, 5, 11,我们要凑出15的时候, 贪心策略就会出错:
15 = 11 * 1 + 1 * 4 (贪心策略)
15 = 5 * 3(正确策略)
贪心策略哪里出错了?
鼠目寸光
重新分析刚刚的例子。w=15时,我们如果取11,接下来就面对w=4的情况;如果取5,则接下来面对w=10的情况。我们发现这些问题都有相同的形式:“给定w,凑出w所用的最少钞票是多少张?” 接下来,我们用f(n)来表示“凑出n所需的最少钞票数量”。
那么,如果我们取了11,最后的代价(用掉的钞票总数)是多少呢?
明显 ,它的意义是:利用11来凑出15,付出的代价等于f(4)加上自己这一张钞票。现在我们暂时不管f(4)怎么求出来。
依次类推,马上可以知道:如果我们用5来凑出15,cost就是f(10) + 1 = 2 + 1 = 3 。
那么,现在w=15的时候,我们该取那种钞票呢?当然是各种方案中,cost值最低的那一个
- 取11: cost=f(4)+1=4+1=5
- 取5: cost = f(10) + 1 = 2 + 1 = 3
- 取1: cost = f(14) + 1 = 4 + 1 = 5
显而易见,cost值最低的是取5的方案。我们通过上面三个式子,做出了正确的决策!
这给了我们一个至关重要的启示—— 只与 相关;更确切地说: f(n) 只与 f(n-1),f(n-5),f(n-11) 相关;更确切地说:
f(n)=min{f(n-1),f(n-5),f(n-11)}+1
则数组内面值为为[1,5,11]时:
int [] f = new int[amount + 1], cost;
f[0] = 0;
for(int i = 1; i <= amount; i++){
cost = Integer.MAX_VALUE;
if(i - 1 >=0) cost = Math.min(cost, f[i-1] + 1);
if(i - 5 >=0) cost = Math.min(cost, f[i-5] + 1);
if(i - 11 >=0) cost = Math.min(cost, f[i-11] + 1);
f[i]=cost;
}
代码实现:
class Solution {
public static int coinChange(int[] coins, int amount) {
int[] dp = new int[amount + 1];
dp[0] = 0;
for (int i = 1; i <= amount; i++) {
int cost = Integer.MAX_VALUE;
for (int j = 0; j < coins.length; j++) {
if (i - coins[j] >= 0) {
if(dp[i-coins[j]] != Integer.MAX_VALUE) {
cost = Math.min(cost, dp[i - coins[j]] + 1);
}
}
}
dp[i] = cost;
}
return dp[amount] == Integer.MAX_VALUE ? -1 : dp[amount];
}
}
Leetcode题目322.零钱兑换(动态规划-中等)的更多相关文章
- LeetCode:322. 零钱兑换
链接:https://leetcode-cn.com/problems/coin-change/ 标签:动态规划.完全背包问题.广度优先搜索 题目 给定不同面额的硬币 coins 和一个总金额 amo ...
- Leetcode题目279.完全平方数(动态规划-中等)
题目描述: 给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12 输出: 3 解 ...
- Java实现 LeetCode 322 零钱兑换
322. 零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输 ...
- Leetcode 322.零钱兑换
零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: co ...
- leetcode 322零钱兑换
You are given coins of different denominations and a total amount of money amount. Write a function ...
- [LeetCode]322. 零钱兑换(DP)
题目 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: coin ...
- Leetcode题目198.打家劫舍(动态规划-简单)
题目描述: 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给 ...
- Leetcode题目287.寻找重复数(中等)
题目描述: 给定一个包含 n + 1 个整数的数组 nums,其数字都在 1 到 n 之间(包括 1 和 n),可知至少存在一个重复的整数.假设只有一个重复的整数,找出这个重复的数. 示例 1: 输入 ...
- Leetcode题目78.子集(回溯-中等)
题目描述: 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3] 输出: [ [3], [1] ...
随机推荐
- JS基础 sessionStorage
html5中的Web Storage包括了两种存储方式:sessionStorage和localStorage. sessionStorage用于本地存储一个会话(session)中的数据,这些数据只 ...
- json _ ajax_跨域
1 json 1 js 对象 语法: 1 通过一对{}表示一个对象 2 在{}中允许通过 key:value 的形式来表示属性 3 多对的属性和值之间使用 , 隔开 2 什么中JSON 按照JS对象的 ...
- keil 选项卡设置
*1.optimization : level2. *2. 2)硬件目标设置选项卡(Target),见图6所示. 图6 1:选择硬件目标设置选项卡 2:指定用于的晶振频率 3:在应用中可以选择实时操 ...
- 算法笔记--可撤销并查集 && 可持久化并查集
可撤销并查集模板: struct UFS { stack<pair<int*, int>> stk; int fa[N], rnk[N]; inline void init(i ...
- ZZNUOJ-2154:单身狗线下聚会【求N个数的最小公倍数,会超longlong,大数乘法,Java】
2154: 单身狗线下聚会 题目描述 马上就到七夕节了,单身狗们决定聚一聚.但是它们沉迷B站上的lo娘,他们每沉迷 ai 单身狗时间(这是它们专业计时)后就会休息 单身狗时间.它们想找到一个时间正好他 ...
- JS export 异步导出
function getUrl () { req().then(res => { console.log(res); }).catch(err => { console.log(err); ...
- 「Django」Django内置email发送邮件
Django内置email发送邮件 1.首先在settings.py文件设置相关参数 STATIC_URL = '/static/' # 设置邮件域名 EMAIL_HOST = 'smtp.163.c ...
- Django的ManyToManyField(多对多)中的through的作用
创建一个经典的多对多关系:一本书可以有多个作者,一个作者可以有多本书(如下) 运行“python manage.py makemigratons"和"python manage.p ...
- 洛谷P1273 有线电视网【树形dp】
题目:https://www.luogu.org/problemnew/show/P1273 题意:一棵树,叶子节点是用户,每天边有一个权值表示花费,每一个用户有一个值表示他们会交的钱. 问在不亏本的 ...
- linux下替换不同目录下的文件的字符串
需求: 查找当前目录下的所有子目录中的catalina.sh文件中的JAVA_OPTS=开头的文件,替换为 JAVA_OPTS='-server -Xms800m -Xmx800m -XX:PermS ...