P2168 [NOI2015]荷马史诗 k叉哈夫曼树
思路:哈夫曼编码
提交:1次(参考题解)
题解:类似合并果子$QwQ$
取出前$k$小(注意如果叶子结点不满的话要补全),合并起来再扔回堆里去。
#include<cstdio>
#include<iostream>
#include<queue>
#define ull unsigned long long
#define ll long long
#define R register ll
using namespace std;
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[<<],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs; namespace Luitaryi {
struct node { ll w; int h; node() {}
node(ll ww,int hh) {w=ww,h=hh;}
inline bool operator <(const node& that) const {return w==that.w?h>that.h:w>that.w;}
};
priority_queue<node> q;
int n,k,lim; ll ans;
inline void main() {
n=g(),k=g();
for(R i=,x;i<=n;++i) x=g(),q.push(node(x,));
if((n-)%(k-)) lim=k--(n-)%(k-);
for(R i=;i<=lim;++i) q.push(node(,));
lim+=n; while(q.size()>) { R W=,H=;
for(R i=;i<=k;++i) {
W+=q.top().w,H=max((ll)q.top().h,H);
q.pop();
} ans+=W; q.push(node(W,H+));
} printf("%lld\n%d\n",ans,q.top().h);
}
}
signed main() {
Luitaryi::main(); return ;
}
2019.07.22
P2168 [NOI2015]荷马史诗 k叉哈夫曼树的更多相关文章
- UOJ#130 【NOI2015】荷马史诗 K叉哈夫曼树
[NOI2015]荷马史诗 链接:http://uoj.ac/problem/130 因为不能有前缀关系,所以单词均为叶子节点,就是K叉哈夫曼树.第一问直接求解,第二问即第二关键字为树的高度. #in ...
- 洛谷 P2168 [NOI2015]荷马史诗 解题报告
P2168 [NOI2015]荷马史诗 题目描述 追逐影子的人,自己就是影子 --荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷 ...
- AcWing:149. 荷马史诗(哈夫曼编码 + k叉哈夫曼树)
追逐影子的人,自己就是影子. ——荷马 达达最近迷上了文学. 她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗>. 但是由<奥德赛>和<伊 ...
- hdu5884 Sort(二分+k叉哈夫曼树)
题目链接:hdu5884 Sort 题意:n个有序序列的归并排序.每次可以选择不超过k个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问k最小是多少. 题解:先二分k,然后在k给 ...
- 两个队列+k叉哈夫曼树 HDU 5884
// 两个队列+k叉哈夫曼树 HDU 5884 // camp题解: // 题意:nn个有序序列的归并排序.每次可以选择不超过kk个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过TT, ...
- 【CF884D】Boxes And Balls k叉哈夫曼树
题目大意:给定一个大小为 N 的集合,每次可以从中挑出 2 个或 3 个数进行合并,合并的代价是几个数的权值和,求将这些数合并成 1 个的最小代价是多少. 引理:K 叉哈夫曼树需要保证 \((n-1) ...
- 贪心法:K叉哈夫曼树
NOI2015荷马史诗 一部<荷马史诗>中有 n 种不同的单词,从 1 到 n 进行编号.其中第 i 种单词出现的总次数为 wi.Allison 想要用 k 进制串 si 来替换第 i 种 ...
- 洛谷P2168 [NOI2015] 荷马史诗 [哈夫曼树]
题目传送门 荷马史诗 Description 追逐影子的人,自己就是影子. ——荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马 ...
- P2168 [NOI2015]荷马史诗
题目描述 追逐影子的人,自己就是影子 ——荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗>.但是由<奥德赛&g ...
随机推荐
- FZU2018级算法第二次作业 2.10 逆序数(权值线段树)
题目: Nk 最近喜欢上了研究逆序数,给出一个由 1…n 组成的数列 a1,a2,a3…an, a1的逆序数就是在 a2…an 中,比 a1 小的数的数量,而 a2 的逆序数就是 a3….an 中比 ...
- Python开发【第三章】:文件操作
一.文件操作模式概述 1.打开文件的模式: r, 只读模式[默认] w,只写模式[不可读:不存在则创建:存在则删除内容:] a, 追加模式[不可读:不存在则创建:存在则只追加内容:] 2." ...
- Intercity Travelling CodeForces - 1009E (组合计数)
大意: 有一段$n$千米的路, 每一次走$1$千米, 每走完一次可以休息一次, 每连续走$x$次, 消耗$a[1]+...+a[x]$的能量. 休息随机, 求消耗能量的期望$\times 2^{n-1 ...
- Shell脚本基础学习
Shell脚本基础学习 当你在类Unix机器上编程时, 或者参与大型项目如k8s等, 某些框架和软件的安装都是使用shell脚本写的. 学会基本的shell脚本使用, 让你走上人生巅峰, 才怪. 学会 ...
- vue 集成jTopo 处理方法
jTopo 帮助说明网站 http://www.jtopo.com/index.html 使用例子: http://www.jtopo.com/demo/helloworld.html 不建议直接安装 ...
- C# 中类的成员有哪些?
类(class)是C#类型中最基础的类型.类是一个数据结构,将状态(字段)和行为(方法和其他函数成员)组合在一个单元中.类提供了用于动态创建类实例的定义,也就是对象(object).类支持继承(inh ...
- Apache ---- Solrl漏洞复现
Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口.用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引:也可以通过Http Get操 ...
- Java中的ThreadLocal详解
一.ThreadLocal简介 多线程访问同一个共享变量的时候容易出现并发问题,特别是多个线程对一个变量进行写入的时候,为了保证线程安全,一般使用者在访问共享变量的时候需要进行额外的同步措施才能保证线 ...
- GIL锁、进程池与线程池、同步异步
GIL锁定义 GIL锁:Global Interpreter Lock 全局解释器 本质上是一把互斥锁 官方解释: 在CPython中,这个全局解释器锁,也称为GIL,是一个互斥锁,防止多个线程在同 ...
- 简单注册表单--HTML练手项目3【Table】
[本文为原创,转载请注明出处] 技术[HTML] 布局[Table] 步骤1 划分table布局 步骤2 填充内容 文本框+密码框+单选框+复选框+多行文本域+按钮 <input> ...