RISC-V汇编指南
原文出处:https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
RISC-V Assembly Programmer's Manual
Copyright and License Information
The RISC-V Assembly Programmer's Manual is
© 2017 Palmer Dabbelt palmer@dabbelt.com © 2017 Michael Clark michaeljclark@mac.com © 2017 Alex Bradbury asb@lowrisc.org
It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full license text is available at https://creativecommons.org/licenses/by/4.0/.
Command-Line Arguments
I think it's probably better to beef up the binutils documentation rather than duplicating it here.
Registers
Registers are the most important part of any processor. RISC-V defines various types, depending on which extensions are included: The general registers (with the program counter), control registers, floating point registers (F extension), and vector registers (V extension).
General registers
The RV32I base integer ISA includes 32 registers, named x0
to x31
. The program counter PC
is separate from these registers, in contrast to other processors such as the ARM-32. The first register, x0
, has a special function: Reading it always returns 0 and writes to it are ignored. As we will see later, this allows various tricks and simplifications.
In practice, the programmer doesn't use this notation for the registers. Though x1
to x31
are all equally general-use registers as far as the processor is concerned, by convention certain registers are used for special tasks. In assembler, they are given standardized names as part of the RISC-V application binary interface (ABI). This is what you will usually see in code listings. If you really want to see the numeric register names, the -M
argument to objdump will provide them.
Register | ABI | Use by convention | Preserved? |
---|---|---|---|
x0 | zero | hardwired to 0, ignores writes | n/a |
x1 | ra | return address for jumps | no |
x2 | sp | stack pointer | yes |
x3 | gp | global pointer | n/a |
x4 | tp | thread pointer | n/a |
x5 | t0 | temporary register 0 | no |
x6 | t1 | temporary register 1 | no |
x7 | t2 | temporary register 2 | no |
x8 | s0 or fp | saved register 0 or frame pointer | yes |
x9 | s1 | saved register 1 | yes |
x10 | a0 | return value or function argument 0 | no |
x11 | a1 | return value or function argument 1 | no |
x12 | a2 | function argument 2 | no |
x13 | a3 | function argument 3 | no |
x14 | a4 | function argument 4 | no |
x15 | a5 | function argument 5 | no |
x16 | a6 | function argument 6 | no |
x17 | a7 | function argument 7 | no |
x18 | s2 | saved register 2 | yes |
x19 | s3 | saved register 3 | yes |
x20 | s4 | saved register 4 | yes |
x21 | s5 | saved register 5 | yes |
x22 | s6 | saved register 6 | yes |
x23 | s7 | saved register 7 | yes |
x24 | s8 | saved register 8 | yes |
x25 | s9 | saved register 9 | yes |
x26 | s10 | saved register 10 | yes |
x27 | s11 | saved register 11 | yes |
x28 | t3 | temporary register 3 | no |
x29 | t4 | temporary register 4 | no |
x30 | t5 | temporary register 5 | no |
x31 | t6 | temporary register 6 | no |
pc | (none) | program counter | n/a |
Registers of the RV32I. Based on RISC-V documentation and Patterson and Waterman "The RISC-V Reader" (2017)
As a general rule, the saved registers s0
to s11
are preserved across function calls, while the argument registers a0
to a7
and the temporary registers t0
to t6
are not. The use of the various specialized registers such as sp
by convention will be discussed later in more detail.
Control registers
(TBA)
Floating Point registers (RV32F)
(TBA)
Vector registers (RV32V)
(TBA)
Addressing
Addressing formats like %pcrel_lo(). We can just link to the RISC-V PS ABI document to describe what the relocations actually do.
Instruction Set
Official Specifications webpage:
Latest Specifications draft repository:
Instructions
RISC-V User Level ISA Specification
https://riscv.org/specifications/
RISC-V Privileged ISA Specification
https://riscv.org/specifications/privileged-isa/
Instruction Aliases
ALIAS line from opcodes/riscv-opc.c
To better diagnose situations where the program flow reaches an unexpected location, you might want to emit there an instruction that's known to trap. You can use an UNIMP
pseudo-instruction, which should trap in nearly all systems. The de facto standard implementation of this instruction is:
C.UNIMP
:0000
. The all-zeroes pattern is not a valid instruction. Any system which traps on invalid instructions will thus trap on thisUNIMP
instruction form. Despite not being a valid instruction, it still fits the 16-bit (compressed) instruction format, and so0000 0000
is interpreted as being two 16-bitUNIMP
instructions.UNIMP
:C0001073
. This is an alias forCSRRW x0, cycle, x0
. Sincecycle
is a read-only CSR, then (whether this CSR exists or not) an attempt to write into it will generate an illegal instruction exception. This 32-bit form ofUNIMP
is emitted when targeting a system without the C extension, or when the.option norvc
directive is used.
Pseudo Ops
Both the RISC-V-specific and GNU .-prefixed options.
The following table lists assembler directives:
Directive | Arguments | Description |
---|---|---|
.align | integer | align to power of 2 (alias for .p2align) |
.file | "filename" | emit filename FILE LOCAL symbol table |
.globl | symbol_name | emit symbol_name to symbol table (scope GLOBAL) |
.local | symbol_name | emit symbol_name to symbol table (scope LOCAL) |
.comm | symbol_name,size,align | emit common object to .bss section |
.common | symbol_name,size,align | emit common object to .bss section |
.ident | "string" | accepted for source compatibility |
.section | [{.text,.data,.rodata,.bss}] | emit section (if not present, default .text) and make current |
.size | symbol, symbol | accepted for source compatibility |
.text | emit .text section (if not present) and make current | |
.data | emit .data section (if not present) and make current | |
.rodata | emit .rodata section (if not present) and make current | |
.bss | emit .bss section (if not present) and make current | |
.string | "string" | emit string |
.asciz | "string" | emit string (alias for .string) |
.equ | name, value | constant definition |
.macro | name arg1 [, argn] | begin macro definition \argname to substitute |
.endm | end macro definition | |
.type | symbol, @function | accepted for source compatibility |
.option | {rvc,norvc,pic,nopic,push,pop} | RISC-V options |
.byte | expression [, expression]* | 8-bit comma separated words |
.2byte | expression [, expression]* | 16-bit comma separated words |
.half | expression [, expression]* | 16-bit comma separated words |
.short | expression [, expression]* | 16-bit comma separated words |
.4byte | expression [, expression]* | 32-bit comma separated words |
.word | expression [, expression]* | 32-bit comma separated words |
.long | expression [, expression]* | 32-bit comma separated words |
.8byte | expression [, expression]* | 64-bit comma separated words |
.dword | expression [, expression]* | 64-bit comma separated words |
.quad | expression [, expression]* | 64-bit comma separated words |
.dtprelword | expression [, expression]* | 32-bit thread local word |
.dtpreldword | expression [, expression]* | 64-bit thread local word |
.sleb128 | expression | signed little endian base 128, DWARF |
.uleb128 | expression | unsigned little endian base 128, DWARF |
.p2align | p2,[pad_val=0],max | align to power of 2 |
.balign | b,[pad_val=0] | byte align |
.zero | integer | zero bytes |
Assembler Relocation Functions
The following table lists assembler relocation expansions:
Assembler Notation | Description | Instruction / Macro |
---|---|---|
%hi(symbol) | Absolute (HI20) | lui |
%lo(symbol) | Absolute (LO12) | load, store, add |
%pcrel_hi(symbol) | PC-relative (HI20) | auipc |
%pcrel_lo(label) | PC-relative (LO12) | load, store, add |
%tprel_hi(symbol) | TLS LE "Local Exec" | lui |
%tprel_lo(symbol) | TLS LE "Local Exec" | load, store, add |
%tprel_add(symbol) | TLS LE "Local Exec" | add |
%tls_ie_pcrel_hi(symbol) * | TLS IE "Initial Exec" (HI20) | auipc |
%tls_gd_pcrel_hi(symbol) * | TLS GD "Global Dynamic" (HI20) | auipc |
%got_pcrel_hi(symbol) * | GOT PC-relative (HI20) | auipc |
* These reuse %pcrel_lo(label) for their lower half
Labels
Text labels are used as branch, unconditional jump targets and symbol offsets. Text labels are added to the symbol table of the compiled module.
loop:
j loop
Numeric labels are used for local references. References to local labels are suffixed with 'f' for a forward reference or 'b' for a backwards reference.
1:
j 1b
Absolute addressing
The following example shows how to load an absolute address:
.section .text
.globl _start
_start:
lui a0, %hi(msg) # load msg(hi)
addi a0, a0, %lo(msg) # load msg(lo)
jal ra, puts
2: j 2b
.section .rodata
msg:
.string "Hello World\n"
which generates the following assembler output and relocations as seen by objdump:
0000000000000000 <_start>:
0: 000005b7 lui a1,0x0
0: R_RISCV_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>
4: R_RISCV_LO12_I msg
Relative addressing
The following example shows how to load a PC-relative address:
.section .text
.globl _start
_start:
1: auipc a0, %pcrel_hi(msg) # load msg(hi)
addi a0, a0, %pcrel_lo(1b) # load msg(lo)
jal ra, puts
2: j 2b
.section .rodata
msg:
.string "Hello World\n"
which generates the following assembler output and relocations as seen by objdump:
0000000000000000 <_start>:
0: 00000597 auipc a1,0x0
0: R_RISCV_PCREL_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>
4: R_RISCV_PCREL_LO12_I .L11
GOT-indirect addressing
The following example shows how to load an address from the GOT:
.section .text
.globl _start
_start:
1: auipc a0, %got_pcrel_hi(msg) # load msg(hi)
ld a0, %pcrel_lo(1b)(a0) # load msg(lo)
jal ra, puts
2: j 2b
.section .rodata
msg:
.string "Hello World\n"
which generates the following assembler output and relocations as seen by objdump:
0000000000000000 <_start>:
0: 00000517 auipc a0,0x0
0: R_RISCV_GOT_HI20 msg
4: 00053503 ld a0,0(a0) # 0 <_start>
4: R_RISCV_PCREL_LO12_I .L11
Load Immediate
The following example shows the li
pseudo instruction which is used to load immediate values:
.section .text
.globl _start
_start:
.equ CONSTANT, 0xcafebabe
li a0, CONSTANT
which generates the following assembler output as seen by objdump:
0000000000000000 <_start>:
0: 00032537 lui a0,0x32
4: bfb50513 addi a0,a0,-1029
8: 00e51513 slli a0,a0,0xe
c: abe50513 addi a0,a0,-1346
Load Address
The following example shows the la
pseudo instruction which is used to load symbol addresses:
.section .text
.globl _start
_start:
la a0, msg
.section .rodata
msg:
.string "Hello World\n"
which generates the following assembler output and relocations for non-PIC as seen by objdump:
0000000000000000 <_start>:
0: 00000517 auipc a0,0x0
0: R_RISCV_PCREL_HI20 msg
4: 00850513 addi a0,a0,8 # 8 <_start+0x8>
4: R_RISCV_PCREL_LO12_I .L11
and generates the following assembler output and relocations for PIC as seen by objdump:
0000000000000000 <_start>:
0: 00000517 auipc a0,0x0
0: R_RISCV_GOT_HI20 msg
4: 00053503 ld a0,0(a0) # 0 <_start>
4: R_RISCV_PCREL_LO12_I .L0
Constants
The following example shows loading a constant using the %hi and %lo assembler functions.
.equ UART_BASE, 0x40003000
lui a0, %hi(UART_BASE)
addi a0, a0, %lo(UART_BASE)
This example uses the li
pseudoinstruction to load a constant and writes a string using polled IO to a UART:
.equ UART_BASE, 0x40003000
.equ REG_RBR, 0
.equ REG_TBR, 0
.equ REG_IIR, 2
.equ IIR_TX_RDY, 2
.equ IIR_RX_RDY, 4
.section .text
.globl _start
_start:
1: auipc a0, %pcrel_hi(msg) # load msg(hi)
addi a0, a0, %pcrel_lo(1b) # load msg(lo)
2: jal ra, puts
3: j 3b
puts:
li a2, UART_BASE
1: lbu a1, (a0)
beqz a1, 3f
2: lbu a3, REG_IIR(a2)
andi a3, a3, IIR_TX_RDY
beqz a3, 2b
sb a1, REG_TBR(a2)
addi a0, a0, 1
j 1b
3: ret
.section .rodata
msg:
.string "Hello World\n"
Floating-point rounding modes
For floating-point instructions with a rounding mode field, the rounding mode can be specified by adding an additional operand. e.g. fcvt.w.s
with round-to-zero can be written as fcvt.w.s a0, fa0, rtz
. If unspecified, the default dyn
rounding mode will be used.
Supported rounding modes are as follows (must be specified in lowercase):
rne
: round to nearest, ties to evenrtz
: round towards zerordn
: round downrup
: round uprmm
: round to nearest, ties to max magnitudedyn
: dynamic rounding mode (the rounding mode specified in thefrm
field of thefcsr
register is used)
Control and Status Registers
The following code sample shows how to enable timer interrupts, set and wait for a timer interrupt to occur:
.equ RTC_BASE, 0x40000000
.equ TIMER_BASE, 0x40004000
# setup machine trap vector
1: auipc t0, %pcrel_hi(mtvec) # load mtvec(hi)
addi t0, t0, %pcrel_lo(1b) # load mtvec(lo)
csrrw zero, mtvec, t0
# set mstatus.MIE=1 (enable M mode interrupt)
li t0, 8
csrrs zero, mstatus, t0
# set mie.MTIE=1 (enable M mode timer interrupts)
li t0, 128
csrrs zero, mie, t0
# read from mtime
li a0, RTC_BASE
ld a1, 0(a0)
# write to mtimecmp
li a0, TIMER_BASE
li t0, 1000000000
add a1, a1, t0
sd a1, 0(a0)
# loop
loop:
wfi
j loop
# break on interrupt
mtvec:
csrrc t0, mcause, zero
bgez t0, fail # interrupt causes are less than zero
slli t0, t0, 1 # shift off high bit
srli t0, t0, 1
li t1, 7 # check this is an m_timer interrupt
bne t0, t1, fail
j pass
pass:
la a0, pass_msg
jal puts
j shutdown
fail:
la a0, fail_msg
jal puts
j shutdown
.section .rodata
pass_msg:
.string "PASS\n"
fail_msg:
.string "FAIL\n"
RISC-V汇编指南的更多相关文章
- 计算机系统6-> 计组与体系结构3 | MIPS指令集(中)| MIPS汇编指令与机器表示
上一篇计算机系统5-> 计组与体系结构2 | MIPS指令集(上)| 指令系统从顶层讲解了一个指令集 / 指令系统应当具备哪些特征和工作原理.这一篇就聚焦MIPS指令集(MIPS32),看看其汇 ...
- RV32I基础整数指令集
RV32I是32位基础整数指令集,它支持32位寻址空间,支持字节地址访问,仅支持小端格式(little-endian,高地址高位,低地址地位),寄存器也是32位整数寄存器.RV32I指令集的目的是尽量 ...
- GCC、GDB、Makefile
1.GCC程序编译 Linux系统下的gcc(GNUCCompiler)是GNU推出的功能强大.性能优越的多平台编译器,是GNU的代表作之一.gcc可以在多种硬体平台上编译出可执行程序,其执行效率与一 ...
- LDM与STM指令详解
title: LDM与STM指令详解 date: 2019/2/26 17:58:00 toc: true --- LDM与STM指令详解 指令形式如下,这里的存储方向是针对寄存器的 Load Mul ...
- 适用于 Internet Explorer 11 的企业模式
https://technet.microsoft.com/zh-cn/itpro/internet-explorer/ie11-deploy-guide/enterprise-mode-overvi ...
- SoC的Testbench中的简易bus_monitor(加入print函数)
SoC的Testbench中的简易bus_monitor(加入print函数) 主要思路 向固定地址写信息 使用工具链将C写的print/printf函数编译成hex文件 在testbench中创建b ...
- SoC编译HEX脚本(基于RISC-V的SoC)
SoC编译HEX脚本(基于RISC-V的SoC) 脚本使用 ./compile hello 脚本:设置RISC-V工具链riscv_set_env ############## RISC-V #### ...
- 程序员延寿指南「GitHub 热点速览 v.22.17」
很多人对程序员的固有印象之一便是常加班.易"猝死"!近几年的许多报道似乎也进一步加深了这种印象.应该如何更好地健康地活着.敲喜欢的代码呢?HowToLiveLonger 教你如何从 ...
- 人体调优不完全指南「GitHub 热点速览 v.22.22」
本周特推又是一个人体调优项目,换而言之就是如何健康生活,同之前的 HowToLiveLonger研究全因死亡率不同,这个项目更容易在生活中实践,比如,早起晒太阳这么一件"小事"便有 ...
随机推荐
- CF280C Game on Tree 概率与期望
利用期望的线性性,即 $E(a+b)=E(a)+E(b)$. 对于所有点分别求一下期望然后累加即可. code: #include <bits/stdc++.h> #define N 10 ...
- 微信小程序环境下将文件上传到 OSS
步骤 1: 配置 Bucket 跨域 客户端进行表单直传到 OSS 时,会从浏览器向 OSS 发送带有 Origin 的请求消息.OSS 对带有 Origin 头的请求消息会进行跨域规则(CORS)的 ...
- PHP全栈学习笔记29
前言 这一章主要讲一讲PHP的背景,优势,PHP的环境搭建,书写和调式简单的PHP代码,如何解决简单的PHP错误等. 目录结构 PHP简介 PHP是面向对象,指令式编程,设计者是 拉斯姆斯·勒多夫 出 ...
- Python基础之给函数增加元信息
1. 参数注解 当写好一个函数以后,想为这个函数的参数添加一些额外的信息,这样的话,其他的使用者就可以清楚的知道这个函数应该怎么使用,这个时候可以使用函数参数注解. 函数参数注解能提示程序员应该怎样正 ...
- Java基本的线程操作(附代码)
啦啦啦啦,从头整理一遍java并发的内容.开始是基本的线程操作 线程状态切换: 新建线程: @Test public void newTread(){ Thread t1 = new Thread(n ...
- hadoop(1)---hadoop的介绍和几种模式。
一.什么是hadoop? Hadoop软件库是一个开源框架,允许使用简单的编程模型跨计算机集群分布式处理大型数据集.它旨在从单个服务器扩展到数千台计算机,每台计算机都提供本地计算和存储.库本身不是依靠 ...
- decode(条件,值1,返回值1,值2,返回值2,...值n,返回值n,缺省值)
decode(条件,值1,返回值1,值2,返回值2,...值n,返回值n,缺省值) 该函数的含义如下: IF 条件=值1 THEN RETURN(翻译值1) ELSIF 条件=值2 THEN RETU ...
- linux的free命令详解-内存是拿来用的不是拿来看的
$ free -m total used free shared buffers cached Mem: -/+ buffers/cache: Swap: 第一部分Mem行:total 内存总数: 1 ...
- JS中的常用的代码操作
本文件介绍常用的js代码的DOM操作.CSS操作.对象(Object对象.Array对象.Number对象.String对象.Math对象.JSON对象和Console对象)操作说明. 一.DOM树的 ...
- Linux信号使用及自定义信号
linux自定义信号:https://www.cnblogs.com/bigben0123/p/3186661.html linux信号.值及解释:https://blog.csdn.net/luot ...