RISC-V汇编指南
原文出处:https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
RISC-V Assembly Programmer's Manual
Copyright and License Information
The RISC-V Assembly Programmer's Manual is
© 2017 Palmer Dabbelt palmer@dabbelt.com © 2017 Michael Clark michaeljclark@mac.com © 2017 Alex Bradbury asb@lowrisc.org
It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full license text is available at https://creativecommons.org/licenses/by/4.0/.
Command-Line Arguments
I think it's probably better to beef up the binutils documentation rather than duplicating it here.
Registers
Registers are the most important part of any processor. RISC-V defines various types, depending on which extensions are included: The general registers (with the program counter), control registers, floating point registers (F extension), and vector registers (V extension).
General registers
The RV32I base integer ISA includes 32 registers, named x0
to x31
. The program counter PC
is separate from these registers, in contrast to other processors such as the ARM-32. The first register, x0
, has a special function: Reading it always returns 0 and writes to it are ignored. As we will see later, this allows various tricks and simplifications.
In practice, the programmer doesn't use this notation for the registers. Though x1
to x31
are all equally general-use registers as far as the processor is concerned, by convention certain registers are used for special tasks. In assembler, they are given standardized names as part of the RISC-V application binary interface (ABI). This is what you will usually see in code listings. If you really want to see the numeric register names, the -M
argument to objdump will provide them.
Register | ABI | Use by convention | Preserved? |
---|---|---|---|
x0 | zero | hardwired to 0, ignores writes | n/a |
x1 | ra | return address for jumps | no |
x2 | sp | stack pointer | yes |
x3 | gp | global pointer | n/a |
x4 | tp | thread pointer | n/a |
x5 | t0 | temporary register 0 | no |
x6 | t1 | temporary register 1 | no |
x7 | t2 | temporary register 2 | no |
x8 | s0 or fp | saved register 0 or frame pointer | yes |
x9 | s1 | saved register 1 | yes |
x10 | a0 | return value or function argument 0 | no |
x11 | a1 | return value or function argument 1 | no |
x12 | a2 | function argument 2 | no |
x13 | a3 | function argument 3 | no |
x14 | a4 | function argument 4 | no |
x15 | a5 | function argument 5 | no |
x16 | a6 | function argument 6 | no |
x17 | a7 | function argument 7 | no |
x18 | s2 | saved register 2 | yes |
x19 | s3 | saved register 3 | yes |
x20 | s4 | saved register 4 | yes |
x21 | s5 | saved register 5 | yes |
x22 | s6 | saved register 6 | yes |
x23 | s7 | saved register 7 | yes |
x24 | s8 | saved register 8 | yes |
x25 | s9 | saved register 9 | yes |
x26 | s10 | saved register 10 | yes |
x27 | s11 | saved register 11 | yes |
x28 | t3 | temporary register 3 | no |
x29 | t4 | temporary register 4 | no |
x30 | t5 | temporary register 5 | no |
x31 | t6 | temporary register 6 | no |
pc | (none) | program counter | n/a |
Registers of the RV32I. Based on RISC-V documentation and Patterson and Waterman "The RISC-V Reader" (2017)
As a general rule, the saved registers s0
to s11
are preserved across function calls, while the argument registers a0
to a7
and the temporary registers t0
to t6
are not. The use of the various specialized registers such as sp
by convention will be discussed later in more detail.
Control registers
(TBA)
Floating Point registers (RV32F)
(TBA)
Vector registers (RV32V)
(TBA)
Addressing
Addressing formats like %pcrel_lo(). We can just link to the RISC-V PS ABI document to describe what the relocations actually do.
Instruction Set
Official Specifications webpage:
Latest Specifications draft repository:
Instructions
RISC-V User Level ISA Specification
https://riscv.org/specifications/
RISC-V Privileged ISA Specification
https://riscv.org/specifications/privileged-isa/
Instruction Aliases
ALIAS line from opcodes/riscv-opc.c
To better diagnose situations where the program flow reaches an unexpected location, you might want to emit there an instruction that's known to trap. You can use an UNIMP
pseudo-instruction, which should trap in nearly all systems. The de facto standard implementation of this instruction is:
C.UNIMP
:0000
. The all-zeroes pattern is not a valid instruction. Any system which traps on invalid instructions will thus trap on thisUNIMP
instruction form. Despite not being a valid instruction, it still fits the 16-bit (compressed) instruction format, and so0000 0000
is interpreted as being two 16-bitUNIMP
instructions.UNIMP
:C0001073
. This is an alias forCSRRW x0, cycle, x0
. Sincecycle
is a read-only CSR, then (whether this CSR exists or not) an attempt to write into it will generate an illegal instruction exception. This 32-bit form ofUNIMP
is emitted when targeting a system without the C extension, or when the.option norvc
directive is used.
Pseudo Ops
Both the RISC-V-specific and GNU .-prefixed options.
The following table lists assembler directives:
Directive | Arguments | Description |
---|---|---|
.align | integer | align to power of 2 (alias for .p2align) |
.file | "filename" | emit filename FILE LOCAL symbol table |
.globl | symbol_name | emit symbol_name to symbol table (scope GLOBAL) |
.local | symbol_name | emit symbol_name to symbol table (scope LOCAL) |
.comm | symbol_name,size,align | emit common object to .bss section |
.common | symbol_name,size,align | emit common object to .bss section |
.ident | "string" | accepted for source compatibility |
.section | [{.text,.data,.rodata,.bss}] | emit section (if not present, default .text) and make current |
.size | symbol, symbol | accepted for source compatibility |
.text | emit .text section (if not present) and make current | |
.data | emit .data section (if not present) and make current | |
.rodata | emit .rodata section (if not present) and make current | |
.bss | emit .bss section (if not present) and make current | |
.string | "string" | emit string |
.asciz | "string" | emit string (alias for .string) |
.equ | name, value | constant definition |
.macro | name arg1 [, argn] | begin macro definition \argname to substitute |
.endm | end macro definition | |
.type | symbol, @function | accepted for source compatibility |
.option | {rvc,norvc,pic,nopic,push,pop} | RISC-V options |
.byte | expression [, expression]* | 8-bit comma separated words |
.2byte | expression [, expression]* | 16-bit comma separated words |
.half | expression [, expression]* | 16-bit comma separated words |
.short | expression [, expression]* | 16-bit comma separated words |
.4byte | expression [, expression]* | 32-bit comma separated words |
.word | expression [, expression]* | 32-bit comma separated words |
.long | expression [, expression]* | 32-bit comma separated words |
.8byte | expression [, expression]* | 64-bit comma separated words |
.dword | expression [, expression]* | 64-bit comma separated words |
.quad | expression [, expression]* | 64-bit comma separated words |
.dtprelword | expression [, expression]* | 32-bit thread local word |
.dtpreldword | expression [, expression]* | 64-bit thread local word |
.sleb128 | expression | signed little endian base 128, DWARF |
.uleb128 | expression | unsigned little endian base 128, DWARF |
.p2align | p2,[pad_val=0],max | align to power of 2 |
.balign | b,[pad_val=0] | byte align |
.zero | integer | zero bytes |
Assembler Relocation Functions
The following table lists assembler relocation expansions:
Assembler Notation | Description | Instruction / Macro |
---|---|---|
%hi(symbol) | Absolute (HI20) | lui |
%lo(symbol) | Absolute (LO12) | load, store, add |
%pcrel_hi(symbol) | PC-relative (HI20) | auipc |
%pcrel_lo(label) | PC-relative (LO12) | load, store, add |
%tprel_hi(symbol) | TLS LE "Local Exec" | lui |
%tprel_lo(symbol) | TLS LE "Local Exec" | load, store, add |
%tprel_add(symbol) | TLS LE "Local Exec" | add |
%tls_ie_pcrel_hi(symbol) * | TLS IE "Initial Exec" (HI20) | auipc |
%tls_gd_pcrel_hi(symbol) * | TLS GD "Global Dynamic" (HI20) | auipc |
%got_pcrel_hi(symbol) * | GOT PC-relative (HI20) | auipc |
* These reuse %pcrel_lo(label) for their lower half
Labels
Text labels are used as branch, unconditional jump targets and symbol offsets. Text labels are added to the symbol table of the compiled module.
loop:
j loop
Numeric labels are used for local references. References to local labels are suffixed with 'f' for a forward reference or 'b' for a backwards reference.
1:
j 1b
Absolute addressing
The following example shows how to load an absolute address:
.section .text
.globl _start
_start:
lui a0, %hi(msg) # load msg(hi)
addi a0, a0, %lo(msg) # load msg(lo)
jal ra, puts
2: j 2b
.section .rodata
msg:
.string "Hello World\n"
which generates the following assembler output and relocations as seen by objdump:
0000000000000000 <_start>:
0: 000005b7 lui a1,0x0
0: R_RISCV_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>
4: R_RISCV_LO12_I msg
Relative addressing
The following example shows how to load a PC-relative address:
.section .text
.globl _start
_start:
1: auipc a0, %pcrel_hi(msg) # load msg(hi)
addi a0, a0, %pcrel_lo(1b) # load msg(lo)
jal ra, puts
2: j 2b
.section .rodata
msg:
.string "Hello World\n"
which generates the following assembler output and relocations as seen by objdump:
0000000000000000 <_start>:
0: 00000597 auipc a1,0x0
0: R_RISCV_PCREL_HI20 msg
4: 00858593 addi a1,a1,8 # 8 <.L21>
4: R_RISCV_PCREL_LO12_I .L11
GOT-indirect addressing
The following example shows how to load an address from the GOT:
.section .text
.globl _start
_start:
1: auipc a0, %got_pcrel_hi(msg) # load msg(hi)
ld a0, %pcrel_lo(1b)(a0) # load msg(lo)
jal ra, puts
2: j 2b
.section .rodata
msg:
.string "Hello World\n"
which generates the following assembler output and relocations as seen by objdump:
0000000000000000 <_start>:
0: 00000517 auipc a0,0x0
0: R_RISCV_GOT_HI20 msg
4: 00053503 ld a0,0(a0) # 0 <_start>
4: R_RISCV_PCREL_LO12_I .L11
Load Immediate
The following example shows the li
pseudo instruction which is used to load immediate values:
.section .text
.globl _start
_start:
.equ CONSTANT, 0xcafebabe
li a0, CONSTANT
which generates the following assembler output as seen by objdump:
0000000000000000 <_start>:
0: 00032537 lui a0,0x32
4: bfb50513 addi a0,a0,-1029
8: 00e51513 slli a0,a0,0xe
c: abe50513 addi a0,a0,-1346
Load Address
The following example shows the la
pseudo instruction which is used to load symbol addresses:
.section .text
.globl _start
_start:
la a0, msg
.section .rodata
msg:
.string "Hello World\n"
which generates the following assembler output and relocations for non-PIC as seen by objdump:
0000000000000000 <_start>:
0: 00000517 auipc a0,0x0
0: R_RISCV_PCREL_HI20 msg
4: 00850513 addi a0,a0,8 # 8 <_start+0x8>
4: R_RISCV_PCREL_LO12_I .L11
and generates the following assembler output and relocations for PIC as seen by objdump:
0000000000000000 <_start>:
0: 00000517 auipc a0,0x0
0: R_RISCV_GOT_HI20 msg
4: 00053503 ld a0,0(a0) # 0 <_start>
4: R_RISCV_PCREL_LO12_I .L0
Constants
The following example shows loading a constant using the %hi and %lo assembler functions.
.equ UART_BASE, 0x40003000
lui a0, %hi(UART_BASE)
addi a0, a0, %lo(UART_BASE)
This example uses the li
pseudoinstruction to load a constant and writes a string using polled IO to a UART:
.equ UART_BASE, 0x40003000
.equ REG_RBR, 0
.equ REG_TBR, 0
.equ REG_IIR, 2
.equ IIR_TX_RDY, 2
.equ IIR_RX_RDY, 4
.section .text
.globl _start
_start:
1: auipc a0, %pcrel_hi(msg) # load msg(hi)
addi a0, a0, %pcrel_lo(1b) # load msg(lo)
2: jal ra, puts
3: j 3b
puts:
li a2, UART_BASE
1: lbu a1, (a0)
beqz a1, 3f
2: lbu a3, REG_IIR(a2)
andi a3, a3, IIR_TX_RDY
beqz a3, 2b
sb a1, REG_TBR(a2)
addi a0, a0, 1
j 1b
3: ret
.section .rodata
msg:
.string "Hello World\n"
Floating-point rounding modes
For floating-point instructions with a rounding mode field, the rounding mode can be specified by adding an additional operand. e.g. fcvt.w.s
with round-to-zero can be written as fcvt.w.s a0, fa0, rtz
. If unspecified, the default dyn
rounding mode will be used.
Supported rounding modes are as follows (must be specified in lowercase):
rne
: round to nearest, ties to evenrtz
: round towards zerordn
: round downrup
: round uprmm
: round to nearest, ties to max magnitudedyn
: dynamic rounding mode (the rounding mode specified in thefrm
field of thefcsr
register is used)
Control and Status Registers
The following code sample shows how to enable timer interrupts, set and wait for a timer interrupt to occur:
.equ RTC_BASE, 0x40000000
.equ TIMER_BASE, 0x40004000
# setup machine trap vector
1: auipc t0, %pcrel_hi(mtvec) # load mtvec(hi)
addi t0, t0, %pcrel_lo(1b) # load mtvec(lo)
csrrw zero, mtvec, t0
# set mstatus.MIE=1 (enable M mode interrupt)
li t0, 8
csrrs zero, mstatus, t0
# set mie.MTIE=1 (enable M mode timer interrupts)
li t0, 128
csrrs zero, mie, t0
# read from mtime
li a0, RTC_BASE
ld a1, 0(a0)
# write to mtimecmp
li a0, TIMER_BASE
li t0, 1000000000
add a1, a1, t0
sd a1, 0(a0)
# loop
loop:
wfi
j loop
# break on interrupt
mtvec:
csrrc t0, mcause, zero
bgez t0, fail # interrupt causes are less than zero
slli t0, t0, 1 # shift off high bit
srli t0, t0, 1
li t1, 7 # check this is an m_timer interrupt
bne t0, t1, fail
j pass
pass:
la a0, pass_msg
jal puts
j shutdown
fail:
la a0, fail_msg
jal puts
j shutdown
.section .rodata
pass_msg:
.string "PASS\n"
fail_msg:
.string "FAIL\n"
RISC-V汇编指南的更多相关文章
- 计算机系统6-> 计组与体系结构3 | MIPS指令集(中)| MIPS汇编指令与机器表示
上一篇计算机系统5-> 计组与体系结构2 | MIPS指令集(上)| 指令系统从顶层讲解了一个指令集 / 指令系统应当具备哪些特征和工作原理.这一篇就聚焦MIPS指令集(MIPS32),看看其汇 ...
- RV32I基础整数指令集
RV32I是32位基础整数指令集,它支持32位寻址空间,支持字节地址访问,仅支持小端格式(little-endian,高地址高位,低地址地位),寄存器也是32位整数寄存器.RV32I指令集的目的是尽量 ...
- GCC、GDB、Makefile
1.GCC程序编译 Linux系统下的gcc(GNUCCompiler)是GNU推出的功能强大.性能优越的多平台编译器,是GNU的代表作之一.gcc可以在多种硬体平台上编译出可执行程序,其执行效率与一 ...
- LDM与STM指令详解
title: LDM与STM指令详解 date: 2019/2/26 17:58:00 toc: true --- LDM与STM指令详解 指令形式如下,这里的存储方向是针对寄存器的 Load Mul ...
- 适用于 Internet Explorer 11 的企业模式
https://technet.microsoft.com/zh-cn/itpro/internet-explorer/ie11-deploy-guide/enterprise-mode-overvi ...
- SoC的Testbench中的简易bus_monitor(加入print函数)
SoC的Testbench中的简易bus_monitor(加入print函数) 主要思路 向固定地址写信息 使用工具链将C写的print/printf函数编译成hex文件 在testbench中创建b ...
- SoC编译HEX脚本(基于RISC-V的SoC)
SoC编译HEX脚本(基于RISC-V的SoC) 脚本使用 ./compile hello 脚本:设置RISC-V工具链riscv_set_env ############## RISC-V #### ...
- 程序员延寿指南「GitHub 热点速览 v.22.17」
很多人对程序员的固有印象之一便是常加班.易"猝死"!近几年的许多报道似乎也进一步加深了这种印象.应该如何更好地健康地活着.敲喜欢的代码呢?HowToLiveLonger 教你如何从 ...
- 人体调优不完全指南「GitHub 热点速览 v.22.22」
本周特推又是一个人体调优项目,换而言之就是如何健康生活,同之前的 HowToLiveLonger研究全因死亡率不同,这个项目更容易在生活中实践,比如,早起晒太阳这么一件"小事"便有 ...
随机推荐
- umediter实现粘贴word图片
图片的复制无非有两种方法,一种是图片直接上传到服务器,另外一种转换成二进制流的base64码目前限chrome浏览器使用首先以um-editor的二进制流保存为例:打开umeditor.js,找到UM ...
- 搭建自己的博客(十三):为博客后台添加ckeditor富文本编辑器
使用django默认的编辑器感觉功能太少了,所以集成一下富文本编辑器. 1.安装和使用 (1).安装 pip install django-ckeditor (2).注册应用 在django的sett ...
- qml 绘制高精地图之怀疑人生的加载速度
绘制高精地图时需要gps的经纬度坐标,之前的实现方式是QGeocoordinate类的经纬度变量通过json的方式在qml中使用. 以画线为例,使用方式是这样哒. for(var i in vehic ...
- 【概率论】4-7:条件期望(Conditional Expectation)
title: [概率论]4-7:条件期望(Conditional Expectation) categories: - Mathematic - Probability keywords: - Exp ...
- TCP/IP协议11种状态
1.l SYN_SENT :这个状态与SYN_RCVD 状态相呼应,当客户端SOCKET执行connect()进行连接时,它首先发送SYN报文,然后随即进入到SYN_SENT 状态,并等待服务端的发 ...
- bind--dns-docker---[nslookup/dig]
[dig] https://www.cnblogs.com/apexchu/p/6790241.html [dns resolution and revserse ]https://www.cnbl ...
- AOP 与 Spring中AOP使用(上)
AOP简介 在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程, 通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术. AOP是OOP的延续 ...
- Java List 和 Array 转化
List to Array List 提供了toArray的接口,所以可以直接调用转为object型数组 List<String> list = new ArrayList<Stri ...
- 《你不知道的JavaScript(上)》笔记——this全面解析
首先要理解调用位置: 调用位置就是函数在代码中被调用的位置(而不是声明的位置). 最重要的是要分析调用栈(就是为了到达当前执行位置所调用的所有函数). 我们关心的调用位置就在当前正在执行的函数的前一个 ...
- Java中运行动态脚本
这里主要总结Java中集成Groovy的应用. Groovy可以与Java完美集成来扩展我们的应用,比如替代Java+jexl实现算式表达式计算或其它功能.在Ofbiz中也集成了Groovy来执行一些 ...