O(n) O(log n) blist: an asymptotically faster list-like type for Python
https://pypi.org/project/blist/
blist: an asymptotically faster list-like type for Python — blist 1.3.6 documentation http://stutzbachenterprises.com/blist/
The blist is a drop-in replacement for the Python list that provides better performance when modifying large lists. The blist package also provides sortedlist, sortedset, weaksortedlist, weaksortedset, sorteddict, and btuple types.
Full documentation is at the link below:
http://stutzbachenterprises.com/blist-doc/
Python’s built-in list is a dynamically-sized array; to insert or remove an item from the beginning or middle of the list, it has to move most of the list in memory, i.e., O(n) operations. The blist uses a flexible, hybrid array/tree structure and only needs to move a small portion of items in memory, specifically using O(log n) operations.
For small lists, the blist and the built-in list have virtually identical performance.
To use the blist, you simply change code like this:
>>> items = [5, 6, 2]
>>> more_items = function_that_returns_a_list()
to:
>>> from blist import blist
>>> items = blist([5, 6, 2])
>>> more_items = blist(function_that_returns_a_list())
Here are some of the use cases where the blist asymptotically outperforms the built-in list:
Use Case | blist | list |
---|---|---|
Insertion into or removal from a list | O(log n) | O(n) |
Taking slices of lists | O(log n) | O(n) |
Making shallow copies of lists | O(1) | O(n) |
Changing slices of lists | O(log n + log k) | O(n+k) |
Multiplying a list to make a sparse list | O(log k) | O(kn) |
Maintain a sorted lists with bisect.insort | O(log**2 n) | O(n) |
So you can see the performance of the blist in more detail, several performance graphs available at the following link: http://stutzbachenterprises.com/blist/
Example usage:
>>> from blist import *
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> x.append(5) # append to x
>>> y = x[4:-234234] # Take a 500 million element slice from x
>>> del x[3:1024] # Delete a few thousand elements from x
Other data structures
The blist package provides other data structures based on the blist:
- sortedlist
- sortedset
- weaksortedlist
- weaksortedset
- sorteddict
- btuple
These additional data structures are only available in Python 2.6 or higher, as they make use of Abstract Base Classes.
The sortedlist is a list that’s always sorted. It’s iterable and indexable like a Python list, but to modify a sortedlist the same methods you would use on a Python set (add, discard, or remove).
>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1])
>>> my_list
sortedlist([1, 2, 3, 7])
>>> my_list.add(5)
>>> my_list[3]
5
>>>
The sortedlist constructor takes an optional “key” argument, which may be used to change the sort order just like the sorted() function.
>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1], key=lambda i: -i)
sortedlist([7, 3, 2, 1]
>>>
The sortedset is a set that’s always sorted. It’s iterable and indexable like a Python list, but modified like a set. Essentially, it’s just like a sortedlist except that duplicates are ignored.
>>> from blist import sortedset
>>> my_set = sortedset([3,7,2,2])
sortedset([2, 3, 7]
>>>
The weaksortedlist and weaksortedset are weakref variations of the sortedlist and sortedset.
The sorteddict works just like a regular dict, except the keys are always sorted. The sorteddict should not be confused with Python 2.7’s OrderedDict type, which remembers the insertion order of the keys.
>>> from blist import sorteddict
>>> my_dict = sorteddict({1: 5, 6: 8, -5: 9})
>>> my_dict.keys()
[-5, 1, 6]
>>>
The btuple is a drop-in replacement for the built-in tuple. Compared to the built-in tuple, the btuple offers the following advantages:
- Constructing a btuple from a blist takes O(1) time.
- Taking a slice of a btuple takes O(n) time, where n is the size of the original tuple. The size of the slice does not matter.
>>> from blist import blist, btuple
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> y = btuple(x) # y is a btuple with > 500 million elements
Installation instructions
Python 2.5 or higher is required. If building from the source distribution, the Python header files are also required. In either case, just run:
python setup.py install
If you’re running Linux and see a bunch of compilation errors from GCC, you probably do not have the Python header files installed. They’re usually located in a package called something like “python2.6-dev”.
The blist package will be installed in the ‘site-packages’ directory of your Python installation. (Unless directed elsewhere; see the “Installing Python Modules” section of the Python manuals for details on customizing installation locations, etc.).
If you downloaded the source distribution and wish to run the associated test suite, you can also run:
python setup.py test
which will verify the correct installation and functioning of the package. The tests require Python 2.6 or higher.
Feedback
We’re eager to hear about your experiences with the blist. You can email me at daniel@stutzbachenterprises.com. Alternately, bug reports and feature requests may be reported on our bug tracker at: http://github.com/DanielStutzbach/blist/issues
How we test
In addition to the tests include in the source distribution, we perform the following to add extra rigor to our testing process:
- We use a “fuzzer”: a program that randomly generates list operations, performs them using both the blist and the built-in list, and compares the results.
- We use a modified Python interpreter where we have replaced the array-based built-in list with the blist. Then, we run all of the regular Python unit tests.
O(n) O(log n) blist: an asymptotically faster list-like type for Python的更多相关文章
- 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本 (转载)
自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本 转自:https://www.cnblogs.com/ailiailan/p/8304989.html 作为测试, ...
- 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本
作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...
- 脚本自动统计安卓log中Anr、Crash等出现的数量(Python)
作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...
- Mininet在创建拓扑的过程中为什么不打印信息了——了解Mininet的log系统
前言 写这篇博客是为了给我的愚蠢和浪费的6个小时买单! 过程原因分析 我用Mininet创建过不少拓扑了,这次创建的拓扑非常简单,如下图,创建拓扑的代码见github.在以前的拓扑创建过程中,我都是用 ...
- openstack 中 log模块分析
1 . 所在模块,一般在openstack/common/log.py,其实最主要的还是调用了python中的logging模块: 入口函数在 def setup(product_name, vers ...
- Log4Net .NET log处理
1.NuGet 安装Log4Net. 2.新建一个Common的project,并且添加一个LogWriter的类: public class LogWriter { //Error log publ ...
- python 每日一练: 读取log文件中的数据,并画图表
之前在excel里面分析log数据,简直日了*了. 现在用python在处理日志数据. 主要涉及 matplotlib,open和循环的使用. 日志内容大致如下 2016-10-21 21:07:59 ...
- ubuntu运行命令tee显示和保存为log
一般有三种需求: 假如我要执行一个py文件 python class.py 1:将命令输出结果保存到文件log.log python class.py |tee log.log 结果就是:屏幕输出和直 ...
- ORACLE LOG的管理
CREATE OR REPLACE PACKAGE PLOG IS /** * package name : PLOG *<br/> *<br/> *See : <a h ...
随机推荐
- c# 克隆来创建对象副本
- K8S 1.12大特性最快最深度解析:Kubernetes CSI Snapshot(下)
Kubernetes CSI Snapshot(下篇) 目标目前在Kuberentes中,卷插件仅支持配置空的存储卷.随着新的存储功能(包括卷快照和卷克隆)的提出,因此需要支持配置卷时数据填充以.例 ...
- Codeforces #367 (Div. 2) D. Vasiliy's Multiset (trie 树)
http://codeforces.com/group/1EzrFFyOc0/contest/706/problem/D 题目:就是有3种操作 + x向集合里添加 x - x 删除x元素,(保证存在 ...
- java疑问
1. new String("abc")究竟创建几个对象? 答: 一个或两个, 如果常量池中原来有"abc", 那么只创建一个对象; 如果常量池中原来没有&qu ...
- c++ 智能指针的使用
https://www.cnblogs.com/TenosDoIt/p/3456704.html #include <QCoreApplication> #include <stri ...
- BZOJ 1495 [NOI2006]网络收费(暴力DP)
题意 给定一棵满二叉树,每个叶节点有一个状态0/10/10/1,对于每两个叶节点i,ji,ji,j,如果这两个叶节点状态相同但他们的LCALCALCA所管辖的子树中的与他们状态相同的叶节点个数较少(少 ...
- vue 配置 TinyMCE
1.index.html 增加cdn 地址 <script src="//cdn.bootcss.com/tinymce/5.0.16/tinymce.min.js"> ...
- 在jQuery中使用自定义属性
在jquery中 自定义属性及值默认以下都是在class='acitve'对象中 进行自定义属性操作:1,自定义属性格式:data-xxxx2,获取该属性值: $('.active').data('x ...
- mysql查询重复数据
SELECT * FROM oa_user ) ORDER BY UserName oa_user表名,UserName需要查重复的字段名
- Neo4j数据进行备份、还原
一.neo4j备份方式 neo4j数据库的备份还原分为两种: offline 和 online. Offline backup - dump Dump a database into a single ...