O(n) O(log n) blist: an asymptotically faster list-like type for Python
https://pypi.org/project/blist/
blist: an asymptotically faster list-like type for Python — blist 1.3.6 documentation http://stutzbachenterprises.com/blist/
The blist is a drop-in replacement for the Python list that provides better performance when modifying large lists. The blist package also provides sortedlist, sortedset, weaksortedlist, weaksortedset, sorteddict, and btuple types.
Full documentation is at the link below:
http://stutzbachenterprises.com/blist-doc/
Python’s built-in list is a dynamically-sized array; to insert or remove an item from the beginning or middle of the list, it has to move most of the list in memory, i.e., O(n) operations. The blist uses a flexible, hybrid array/tree structure and only needs to move a small portion of items in memory, specifically using O(log n) operations.
For small lists, the blist and the built-in list have virtually identical performance.
To use the blist, you simply change code like this:
>>> items = [5, 6, 2]
>>> more_items = function_that_returns_a_list()
to:
>>> from blist import blist
>>> items = blist([5, 6, 2])
>>> more_items = blist(function_that_returns_a_list())
Here are some of the use cases where the blist asymptotically outperforms the built-in list:
| Use Case | blist | list |
|---|---|---|
| Insertion into or removal from a list | O(log n) | O(n) |
| Taking slices of lists | O(log n) | O(n) |
| Making shallow copies of lists | O(1) | O(n) |
| Changing slices of lists | O(log n + log k) | O(n+k) |
| Multiplying a list to make a sparse list | O(log k) | O(kn) |
| Maintain a sorted lists with bisect.insort | O(log**2 n) | O(n) |
So you can see the performance of the blist in more detail, several performance graphs available at the following link: http://stutzbachenterprises.com/blist/
Example usage:
>>> from blist import *
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> x.append(5) # append to x
>>> y = x[4:-234234] # Take a 500 million element slice from x
>>> del x[3:1024] # Delete a few thousand elements from x
Other data structures
The blist package provides other data structures based on the blist:
- sortedlist
- sortedset
- weaksortedlist
- weaksortedset
- sorteddict
- btuple
These additional data structures are only available in Python 2.6 or higher, as they make use of Abstract Base Classes.
The sortedlist is a list that’s always sorted. It’s iterable and indexable like a Python list, but to modify a sortedlist the same methods you would use on a Python set (add, discard, or remove).
>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1])
>>> my_list
sortedlist([1, 2, 3, 7])
>>> my_list.add(5)
>>> my_list[3]
5
>>>
The sortedlist constructor takes an optional “key” argument, which may be used to change the sort order just like the sorted() function.
>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1], key=lambda i: -i)
sortedlist([7, 3, 2, 1]
>>>
The sortedset is a set that’s always sorted. It’s iterable and indexable like a Python list, but modified like a set. Essentially, it’s just like a sortedlist except that duplicates are ignored.
>>> from blist import sortedset
>>> my_set = sortedset([3,7,2,2])
sortedset([2, 3, 7]
>>>
The weaksortedlist and weaksortedset are weakref variations of the sortedlist and sortedset.
The sorteddict works just like a regular dict, except the keys are always sorted. The sorteddict should not be confused with Python 2.7’s OrderedDict type, which remembers the insertion order of the keys.
>>> from blist import sorteddict
>>> my_dict = sorteddict({1: 5, 6: 8, -5: 9})
>>> my_dict.keys()
[-5, 1, 6]
>>>
The btuple is a drop-in replacement for the built-in tuple. Compared to the built-in tuple, the btuple offers the following advantages:
- Constructing a btuple from a blist takes O(1) time.
- Taking a slice of a btuple takes O(n) time, where n is the size of the original tuple. The size of the slice does not matter.
>>> from blist import blist, btuple
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> y = btuple(x) # y is a btuple with > 500 million elements
Installation instructions
Python 2.5 or higher is required. If building from the source distribution, the Python header files are also required. In either case, just run:
python setup.py install
If you’re running Linux and see a bunch of compilation errors from GCC, you probably do not have the Python header files installed. They’re usually located in a package called something like “python2.6-dev”.
The blist package will be installed in the ‘site-packages’ directory of your Python installation. (Unless directed elsewhere; see the “Installing Python Modules” section of the Python manuals for details on customizing installation locations, etc.).
If you downloaded the source distribution and wish to run the associated test suite, you can also run:
python setup.py test
which will verify the correct installation and functioning of the package. The tests require Python 2.6 or higher.
Feedback
We’re eager to hear about your experiences with the blist. You can email me at daniel@stutzbachenterprises.com. Alternately, bug reports and feature requests may be reported on our bug tracker at: http://github.com/DanielStutzbach/blist/issues
How we test
In addition to the tests include in the source distribution, we perform the following to add extra rigor to our testing process:
- We use a “fuzzer”: a program that randomly generates list operations, performs them using both the blist and the built-in list, and compares the results.
- We use a modified Python interpreter where we have replaced the array-based built-in list with the blist. Then, we run all of the regular Python unit tests.
O(n) O(log n) blist: an asymptotically faster list-like type for Python的更多相关文章
- 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本 (转载)
自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本 转自:https://www.cnblogs.com/ailiailan/p/8304989.html 作为测试, ...
- 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本
作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...
- 脚本自动统计安卓log中Anr、Crash等出现的数量(Python)
作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...
- Mininet在创建拓扑的过程中为什么不打印信息了——了解Mininet的log系统
前言 写这篇博客是为了给我的愚蠢和浪费的6个小时买单! 过程原因分析 我用Mininet创建过不少拓扑了,这次创建的拓扑非常简单,如下图,创建拓扑的代码见github.在以前的拓扑创建过程中,我都是用 ...
- openstack 中 log模块分析
1 . 所在模块,一般在openstack/common/log.py,其实最主要的还是调用了python中的logging模块: 入口函数在 def setup(product_name, vers ...
- Log4Net .NET log处理
1.NuGet 安装Log4Net. 2.新建一个Common的project,并且添加一个LogWriter的类: public class LogWriter { //Error log publ ...
- python 每日一练: 读取log文件中的数据,并画图表
之前在excel里面分析log数据,简直日了*了. 现在用python在处理日志数据. 主要涉及 matplotlib,open和循环的使用. 日志内容大致如下 2016-10-21 21:07:59 ...
- ubuntu运行命令tee显示和保存为log
一般有三种需求: 假如我要执行一个py文件 python class.py 1:将命令输出结果保存到文件log.log python class.py |tee log.log 结果就是:屏幕输出和直 ...
- ORACLE LOG的管理
CREATE OR REPLACE PACKAGE PLOG IS /** * package name : PLOG *<br/> *<br/> *See : <a h ...
随机推荐
- Vue学习官网和Vue的书籍 目录结构
Vue基础知识学习网站[中文] https://cn.vuejs.org/v2/guide/ Vue路由知识学习网站[中文] https://router.vuejs.org/zh/guide/ V ...
- redo log和bin log
讲redolog和binlog之前,先要讲一下一条mysql语句的执行过程. 1.client的写请求到达连接器,连接器负责管理连接.验证权限: 2.然后是分析器,负责复习语法,如果这条语句有执行过, ...
- c# 使用序列化
- 【DRF框架】序列化组件——字段验证
单个字段的验证 1.在序列化器里定义校验字段的钩子方法 validate_字段 2.获取字段的数据 3.验证不通过,抛出异常 raise serializers.ValidationError( ...
- 每日一题-——LeetCode(46)全排列
题目描述: 给定一个没有重复数字的序列,返回其所有可能的全排列.输入: [1,2,3]输出:[ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ...
- Nginx.conf配置文件默认配置块略解
#user nobody; worker_processes 1; #error_log logs/error.log; #error_log logs/error.log notice; #erro ...
- springboot集成rabbitmq并手动注册容器实现单个queue的ack模式
原文:https://blog.csdn.net/qq_38439885/article/details/88982373 进入正题,本文会介绍两种实现rabbitmq的ack模式的方法,分别为: 一 ...
- java只能的round,ceil,floor方法的使用
三者均位于java.lange包下的Math类中 round: 在原来数字的基础上加上0.5后向下取整, 例如: Math.floor(11.5)=12; Math.floor(-11.5)=-11( ...
- 什么是Log4j,Log4j详解!
由于时间紧急,自己就不写了.一下转载链接: https://www.cnblogs.com/ITtangtang/p/3926665.html
- Nginx 做JavaWeb负载均衡
随着用户量的增大,单台服务器已经满足不了用户的需求. 准备工作:安装 gcc.pcre-devel.zlib.OpenSSL 一下是在线 离线请戳这里 gcc 安装安装 nginx 需要先将官网下 ...