https://pypi.org/project/blist/

blist: an asymptotically faster list-like type for Python — blist 1.3.6 documentation http://stutzbachenterprises.com/blist/

The blist is a drop-in replacement for the Python list that provides better performance when modifying large lists. The blist package also provides sortedlistsortedsetweaksortedlistweaksortedsetsorteddict, and btuple types.

Full documentation is at the link below:

http://stutzbachenterprises.com/blist-doc/

Python’s built-in list is a dynamically-sized array; to insert or remove an item from the beginning or middle of the list, it has to move most of the list in memory, i.e., O(n) operations. The blist uses a flexible, hybrid array/tree structure and only needs to move a small portion of items in memory, specifically using O(log n) operations.

For small lists, the blist and the built-in list have virtually identical performance.

To use the blist, you simply change code like this:

>>> items = [5, 6, 2]
>>> more_items = function_that_returns_a_list()

to:

>>> from blist import blist
>>> items = blist([5, 6, 2])
>>> more_items = blist(function_that_returns_a_list())

Here are some of the use cases where the blist asymptotically outperforms the built-in list:

Use Case blist list
Insertion into or removal from a list O(log n) O(n)
Taking slices of lists O(log n) O(n)
Making shallow copies of lists O(1) O(n)
Changing slices of lists O(log n + log k) O(n+k)
Multiplying a list to make a sparse list O(log k) O(kn)
Maintain a sorted lists with bisect.insort O(log**2 n) O(n)

So you can see the performance of the blist in more detail, several performance graphs available at the following link: http://stutzbachenterprises.com/blist/

Example usage:

>>> from blist import *
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> x.append(5) # append to x
>>> y = x[4:-234234] # Take a 500 million element slice from x
>>> del x[3:1024] # Delete a few thousand elements from x

Other data structures

The blist package provides other data structures based on the blist:

  • sortedlist
  • sortedset
  • weaksortedlist
  • weaksortedset
  • sorteddict
  • btuple

These additional data structures are only available in Python 2.6 or higher, as they make use of Abstract Base Classes.

The sortedlist is a list that’s always sorted. It’s iterable and indexable like a Python list, but to modify a sortedlist the same methods you would use on a Python set (add, discard, or remove).

>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1])
>>> my_list
sortedlist([1, 2, 3, 7])
>>> my_list.add(5)
>>> my_list[3]
5
>>>

The sortedlist constructor takes an optional “key” argument, which may be used to change the sort order just like the sorted() function.

>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1], key=lambda i: -i)
sortedlist([7, 3, 2, 1]
>>>

The sortedset is a set that’s always sorted. It’s iterable and indexable like a Python list, but modified like a set. Essentially, it’s just like a sortedlist except that duplicates are ignored.

>>> from blist import sortedset
>>> my_set = sortedset([3,7,2,2])
sortedset([2, 3, 7]
>>>

The weaksortedlist and weaksortedset are weakref variations of the sortedlist and sortedset.

The sorteddict works just like a regular dict, except the keys are always sorted. The sorteddict should not be confused with Python 2.7’s OrderedDict type, which remembers the insertion order of the keys.

>>> from blist import sorteddict
>>> my_dict = sorteddict({1: 5, 6: 8, -5: 9})
>>> my_dict.keys()
[-5, 1, 6]
>>>

The btuple is a drop-in replacement for the built-in tuple. Compared to the built-in tuple, the btuple offers the following advantages:

  • Constructing a btuple from a blist takes O(1) time.
  • Taking a slice of a btuple takes O(n) time, where n is the size of the original tuple. The size of the slice does not matter.
>>> from blist import blist, btuple
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> y = btuple(x) # y is a btuple with > 500 million elements

Installation instructions

Python 2.5 or higher is required. If building from the source distribution, the Python header files are also required. In either case, just run:

python setup.py install

If you’re running Linux and see a bunch of compilation errors from GCC, you probably do not have the Python header files installed. They’re usually located in a package called something like “python2.6-dev”.

The blist package will be installed in the ‘site-packages’ directory of your Python installation. (Unless directed elsewhere; see the “Installing Python Modules” section of the Python manuals for details on customizing installation locations, etc.).

If you downloaded the source distribution and wish to run the associated test suite, you can also run:

python setup.py test

which will verify the correct installation and functioning of the package. The tests require Python 2.6 or higher.

Feedback

We’re eager to hear about your experiences with the blist. You can email me at daniel@stutzbachenterprises.com. Alternately, bug reports and feature requests may be reported on our bug tracker at: http://github.com/DanielStutzbach/blist/issues

How we test

In addition to the tests include in the source distribution, we perform the following to add extra rigor to our testing process:

  1. We use a “fuzzer”: a program that randomly generates list operations, performs them using both the blist and the built-in list, and compares the results.
  2. We use a modified Python interpreter where we have replaced the array-based built-in list with the blist. Then, we run all of the regular Python unit tests.

O(n) O(log n) blist: an asymptotically faster list-like type for Python的更多相关文章

  1. 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本 (转载)

    自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本   转自:https://www.cnblogs.com/ailiailan/p/8304989.html 作为测试, ...

  2. 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本

    作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...

  3. 脚本自动统计安卓log中Anr、Crash等出现的数量(Python)

    作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...

  4. Mininet在创建拓扑的过程中为什么不打印信息了——了解Mininet的log系统

    前言 写这篇博客是为了给我的愚蠢和浪费的6个小时买单! 过程原因分析 我用Mininet创建过不少拓扑了,这次创建的拓扑非常简单,如下图,创建拓扑的代码见github.在以前的拓扑创建过程中,我都是用 ...

  5. openstack 中 log模块分析

    1 . 所在模块,一般在openstack/common/log.py,其实最主要的还是调用了python中的logging模块: 入口函数在 def setup(product_name, vers ...

  6. Log4Net .NET log处理

    1.NuGet 安装Log4Net. 2.新建一个Common的project,并且添加一个LogWriter的类: public class LogWriter { //Error log publ ...

  7. python 每日一练: 读取log文件中的数据,并画图表

    之前在excel里面分析log数据,简直日了*了. 现在用python在处理日志数据. 主要涉及 matplotlib,open和循环的使用. 日志内容大致如下 2016-10-21 21:07:59 ...

  8. ubuntu运行命令tee显示和保存为log

    一般有三种需求: 假如我要执行一个py文件 python class.py 1:将命令输出结果保存到文件log.log python class.py |tee log.log 结果就是:屏幕输出和直 ...

  9. ORACLE LOG的管理

    CREATE OR REPLACE PACKAGE PLOG IS /** * package name : PLOG *<br/> *<br/> *See : <a h ...

随机推荐

  1. SQLSEVER 同台服务器下不同表 触发器实现数据实时同步

    触发器的使用: 1.首先建立两个相同结构的表,两个表明的列的名称不同. student_01   字段  name  ;  字段 age  ; 字段  class ; student_02   字段  ...

  2. URLErro和HTTPError

    url error URLError 产生的原因主要有: 没有网络连接 服务器连接失败 找不到指定的服务器 我们可以用try except语句来捕获相应的异常 from urllib import r ...

  3. CI,CD理解

    一.什么是CI,CD ​ 当我们在谈论现代的软件编译和发布流程的时候,经常会听到CI 和CD这样的缩写短语.CI很容易理解,就是持续集成. ​ 但是CD既可以指代码持续交付,也可理解为代码持续部署.C ...

  4. 昨天521表白失败,我想用Python分析一下...表白记录和聊天记录

    昨天跟喜欢的妹子表白了. 失败了!.下面是表白的聊天记录: (跟妹子已经认识一段时间) 我:灭嘤嘤,我喜欢你. 妹子:你干嘛? 我:今天520,跟你表白鸭. 妹子:那....有多喜欢? 我: 有很多很 ...

  5. Python 获取环境变量的几种方式

    第一种 import os os.environ.get('key_name') 第二种 import os os.getenv('key_name') 第三种 import os os.getenv ...

  6. 关于Django auth注册登录模块的具体使用

    from django.urls import path from . import views urlpatterns = [ #主页,用来显示类别等其他数据 path('',views.index ...

  7. SSH安全优化

    更改远程连接登陆的端口 禁止root管理员直接登陆 密码认证方式改为密钥认证 重要服务不使用公网IP地址 使用防火墙来限制来源IP地址 Port 666                变更SSH服务远 ...

  8. 个性化召回算法实践(五)——item2vec

    item2vec将用户的行为序列转化成item组成的句子,模仿word2vec训练word embedding将item embedding.基本思想是把原来高维稀疏的表示方式(one_hot)映射到 ...

  9. 使用Scrapy框架爬取腾讯新闻

    昨晚没事写的爬取腾讯新闻代码,在此贴出,可以参考完善. # -*- coding: utf-8 -*- import json from scrapy import Spider from scrap ...

  10. AJAX学习笔记——同源策略

    同源策略 同源策略,所有浏览器都实行这个政策 最初,它的含义是指,A 网页设置的 Cookie,B 网页不能打开,除非这两个网页"同源".所谓"同源"指的是&q ...