https://pypi.org/project/blist/

blist: an asymptotically faster list-like type for Python — blist 1.3.6 documentation http://stutzbachenterprises.com/blist/

The blist is a drop-in replacement for the Python list that provides better performance when modifying large lists. The blist package also provides sortedlistsortedsetweaksortedlistweaksortedsetsorteddict, and btuple types.

Full documentation is at the link below:

http://stutzbachenterprises.com/blist-doc/

Python’s built-in list is a dynamically-sized array; to insert or remove an item from the beginning or middle of the list, it has to move most of the list in memory, i.e., O(n) operations. The blist uses a flexible, hybrid array/tree structure and only needs to move a small portion of items in memory, specifically using O(log n) operations.

For small lists, the blist and the built-in list have virtually identical performance.

To use the blist, you simply change code like this:

>>> items = [5, 6, 2]
>>> more_items = function_that_returns_a_list()

to:

>>> from blist import blist
>>> items = blist([5, 6, 2])
>>> more_items = blist(function_that_returns_a_list())

Here are some of the use cases where the blist asymptotically outperforms the built-in list:

Use Case blist list
Insertion into or removal from a list O(log n) O(n)
Taking slices of lists O(log n) O(n)
Making shallow copies of lists O(1) O(n)
Changing slices of lists O(log n + log k) O(n+k)
Multiplying a list to make a sparse list O(log k) O(kn)
Maintain a sorted lists with bisect.insort O(log**2 n) O(n)

So you can see the performance of the blist in more detail, several performance graphs available at the following link: http://stutzbachenterprises.com/blist/

Example usage:

>>> from blist import *
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> x.append(5) # append to x
>>> y = x[4:-234234] # Take a 500 million element slice from x
>>> del x[3:1024] # Delete a few thousand elements from x

Other data structures

The blist package provides other data structures based on the blist:

  • sortedlist
  • sortedset
  • weaksortedlist
  • weaksortedset
  • sorteddict
  • btuple

These additional data structures are only available in Python 2.6 or higher, as they make use of Abstract Base Classes.

The sortedlist is a list that’s always sorted. It’s iterable and indexable like a Python list, but to modify a sortedlist the same methods you would use on a Python set (add, discard, or remove).

>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1])
>>> my_list
sortedlist([1, 2, 3, 7])
>>> my_list.add(5)
>>> my_list[3]
5
>>>

The sortedlist constructor takes an optional “key” argument, which may be used to change the sort order just like the sorted() function.

>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1], key=lambda i: -i)
sortedlist([7, 3, 2, 1]
>>>

The sortedset is a set that’s always sorted. It’s iterable and indexable like a Python list, but modified like a set. Essentially, it’s just like a sortedlist except that duplicates are ignored.

>>> from blist import sortedset
>>> my_set = sortedset([3,7,2,2])
sortedset([2, 3, 7]
>>>

The weaksortedlist and weaksortedset are weakref variations of the sortedlist and sortedset.

The sorteddict works just like a regular dict, except the keys are always sorted. The sorteddict should not be confused with Python 2.7’s OrderedDict type, which remembers the insertion order of the keys.

>>> from blist import sorteddict
>>> my_dict = sorteddict({1: 5, 6: 8, -5: 9})
>>> my_dict.keys()
[-5, 1, 6]
>>>

The btuple is a drop-in replacement for the built-in tuple. Compared to the built-in tuple, the btuple offers the following advantages:

  • Constructing a btuple from a blist takes O(1) time.
  • Taking a slice of a btuple takes O(n) time, where n is the size of the original tuple. The size of the slice does not matter.
>>> from blist import blist, btuple
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> y = btuple(x) # y is a btuple with > 500 million elements

Installation instructions

Python 2.5 or higher is required. If building from the source distribution, the Python header files are also required. In either case, just run:

python setup.py install

If you’re running Linux and see a bunch of compilation errors from GCC, you probably do not have the Python header files installed. They’re usually located in a package called something like “python2.6-dev”.

The blist package will be installed in the ‘site-packages’ directory of your Python installation. (Unless directed elsewhere; see the “Installing Python Modules” section of the Python manuals for details on customizing installation locations, etc.).

If you downloaded the source distribution and wish to run the associated test suite, you can also run:

python setup.py test

which will verify the correct installation and functioning of the package. The tests require Python 2.6 or higher.

Feedback

We’re eager to hear about your experiences with the blist. You can email me at daniel@stutzbachenterprises.com. Alternately, bug reports and feature requests may be reported on our bug tracker at: http://github.com/DanielStutzbach/blist/issues

How we test

In addition to the tests include in the source distribution, we perform the following to add extra rigor to our testing process:

  1. We use a “fuzzer”: a program that randomly generates list operations, performs them using both the blist and the built-in list, and compares the results.
  2. We use a modified Python interpreter where we have replaced the array-based built-in list with the blist. Then, we run all of the regular Python unit tests.

O(n) O(log n) blist: an asymptotically faster list-like type for Python的更多相关文章

  1. 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本 (转载)

    自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本   转自:https://www.cnblogs.com/ailiailan/p/8304989.html 作为测试, ...

  2. 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本

    作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...

  3. 脚本自动统计安卓log中Anr、Crash等出现的数量(Python)

    作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...

  4. Mininet在创建拓扑的过程中为什么不打印信息了——了解Mininet的log系统

    前言 写这篇博客是为了给我的愚蠢和浪费的6个小时买单! 过程原因分析 我用Mininet创建过不少拓扑了,这次创建的拓扑非常简单,如下图,创建拓扑的代码见github.在以前的拓扑创建过程中,我都是用 ...

  5. openstack 中 log模块分析

    1 . 所在模块,一般在openstack/common/log.py,其实最主要的还是调用了python中的logging模块: 入口函数在 def setup(product_name, vers ...

  6. Log4Net .NET log处理

    1.NuGet 安装Log4Net. 2.新建一个Common的project,并且添加一个LogWriter的类: public class LogWriter { //Error log publ ...

  7. python 每日一练: 读取log文件中的数据,并画图表

    之前在excel里面分析log数据,简直日了*了. 现在用python在处理日志数据. 主要涉及 matplotlib,open和循环的使用. 日志内容大致如下 2016-10-21 21:07:59 ...

  8. ubuntu运行命令tee显示和保存为log

    一般有三种需求: 假如我要执行一个py文件 python class.py 1:将命令输出结果保存到文件log.log python class.py |tee log.log 结果就是:屏幕输出和直 ...

  9. ORACLE LOG的管理

    CREATE OR REPLACE PACKAGE PLOG IS /** * package name : PLOG *<br/> *<br/> *See : <a h ...

随机推荐

  1. 基于Java8的日期时间工具类DateTimeFormatter

    原文:https://blog.csdn.net/qq_36596145/article/details/85331002 import java.time.Instant; import java. ...

  2. SpringBoot框架之通用mapper插件(tk.mybatis)

    一.Tkmybatis的好处 Tkmybatis是在mybatis框架的基础上提供了很多工具,让开发更加高效.这个插件里面封装好了我们需要用到的很多sql语句,不过这个插件是通过我们去调用它封装的各种 ...

  3. 运输层2——用户数据报协议UDP

    目录 1. UDP概述 2. UDP首部格式 3. UDP首部检验和计算方法 写在前面:本文章是针对<计算机网络第七版>的学习笔记 运输层1--运输层协议概述 运输层2--用户数据报协议U ...

  4. 【转】angular使用代理解决跨域

    原文:https://www.cnblogs.com/sghy/p/9111293.html ----------------------------------------------------- ...

  5. 《奋斗吧!菜鸟》 第七次作业:团队项目设计完善&编码

    项目 内容 这个作业属于哪个课程 任课教师链接 作业要求 https://www.cnblogs.com/nwnu-daizh/p/10980707.html 团队名称 奋斗吧!菜鸟 作业学习目标 团 ...

  6. Oracle之约束

    数据的完整性用于确保数据库数据遵从一定的商业的逻辑规则.在oracle中,数据完整性可以使用约束.触发器.应用程序(过程.函数)三种方法来实现,在这三种方法中,因为约束易于维护,并且具有最好的性能,所 ...

  7. grafna如何用新的dashbord覆盖旧的dashbord

    方式一.import一个和之前不一样的名字,然后删除旧的方式二.浏览器json页面复制粘贴,覆盖旧的dashbord 1.记录旧dashbord的var参数,从旧dashbord的json页面复制全部 ...

  8. datafram 操作集锦

    Spark Python API 官方文档中文版> 之 pyspark.sql (二) 2017-11-04 22:13 by 牛仔裤的夏天, 365 阅读, 0 评论, 收藏, 编辑 摘要:在 ...

  9. java中日志打印

    目录 一.预先判断日志级别 二.避免无效日志打印 三.区别对待错误日志 四.保证记录完整内容 打印日志,要注意下面4点. 一.预先判断日志级别 对DEBUG.INFO级别的日志,必须使用条件输出或者使 ...

  10. ES 的基本用法

    ES的基本用法 ES的基本概念 1> 集群和节点 一个es集群是由一个或多和es节点组成的集合 每一个集群都有一个名字, 如之前的wali 每个节点都有自己的名字, 如之前的master, sl ...