【线性代数】6-5:正定矩阵(Positive Definite Matrices)
title: 【线性代数】6-5:正定矩阵(Positive Definite Matrices)
categories:
- Mathematic
- Linear Algebra
keywords: - Positive Definite Matrices
- Symmetric Matrices
- Eigenvalues
- Eigenvectors
toc: true
date: 2017-11-24 11:24:21
Abstract: 关于正定矩阵的相关知识总结,正定矩阵在数学中的一个应用
Keywords: Positive Definite Matrices,Symmetric Matrices,Eigenvalues,Eigenvectors
开篇废话
昨晚出了个新闻,红黄蓝还是什么的,发现我们广大人民热情特别高涨,各种谴责啊,阴谋论啊什么,感受到了什么是人言可畏,当我们的呦呦众口指向我们的敌人的时候或者被人陷害成所谓"敌人"的人的时候,那真是踏上一万只脚让人永世不得超生啊,法律不算数,全按照心情办。经济发展迅速,民智并没有开多大,前天在朋友圈里还卖东西,秀美食美景的可爱萌青年们,然后一瞬间变成了社会主义战士,口诛笔伐,还有之前抵制日货,抵制韩货的,说实话,这种人基本的用途的就是贡献劳动力,然后活在忽悠中,说啥信啥,搞民主投票?这种智商也就告别民主了。
再有一个就是删帖,删帖作为治国理政的必要途径,我觉得可以开发个智能分类系统(没准已经在用了)就是自动删帖,人工删太浪费人力,某些公司为了配合组织,也是让删啥删啥,节操算鸡毛,人民币才是硬道理。
然后就是如果小朋友们受到了侵害而没有执法部门保护,或者是执法部门有不作为的现象,而要依靠广大键盘侠,这不是回到原始社会了么?
小朋友们是全人类的希望,应该得到全社会的爱护!
Positive Definite Matrices
正定矩阵,对这个矩阵印象深刻,知道学了这节以后,才知道,正定矩阵就是"Positive Definite Matrices-正的确定矩阵",这个翻译也是耿直,
Positive Definite Matrices 定义为,对称矩阵,并且所有特征值全部大于0
那么我们第一个大问题就是如何确定一个矩阵是不是正定矩阵呢,求特征值肯定是根本方法,定义都说了,对称矩阵,特征值大于0,求出所有特征值,那么自然明朗了,但是有时候我们只需要知道是不是正定矩阵,而不需要知道特征值,这样的话计算代价有点大,我们需要找点别的招数,来避免求特征值。
接下来我们的目标是:
- 找到能快速判断对称矩阵的特征值都是正数
- 正定矩阵的重要应用
本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-6-5转载请标明出处
【线性代数】6-5:正定矩阵(Positive Definite Matrices)的更多相关文章
- 正定矩阵(positive definite matrix)
设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M正定矩阵. 正定矩阵在合同变换下可化为标准型, 即对角矩阵. 所有特征值大于零的对称矩阵也是正定矩阵. ...
- 正定矩阵(definite matrix)
1. 基本定义 在线性规划中,一个对称的 n×n 的实值矩阵 M,如果满足对于任意的非零列向量 z,都有 zTMz>0. 更一般地,对于 n×n 的 Hermitian 矩阵(原矩阵=共轭转置, ...
- a positive definite matrix
https://en.wikipedia.org/wiki/Definite_quadratic_form https://www.math.utah.edu/~zwick/Classes/Fall2 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- 【Math for ML】解析几何(Analytic Geometry)
I. 范数(Norm) 定义: 向量空间\(V\)上的范数(norm)是如下函数: \[ \begin{align} \|·\|:V→R, \notag \\ x→\|x\| \notag \end{ ...
- MIT课程
8.02 Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...
- ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...
- ECCV 2014 Results (16 Jun, 2014) 结果已出
Accepted Papers Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...
- ICLR 2013 International Conference on Learning Representations深度学习论文papers
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...
随机推荐
- SAS学习笔记41 宏变量存储及间接引用
Macro Variables存储在“Symbol Table”中.它是由Macro Processor在SAS启动时自动创建并维护的.SAS提供了一张视图来供我们查看Symbol Table中的内容 ...
- MySQL 子查询(三) 派生表、子查询错误
From MySQL 5.7 ref:13.2.10.8 Derived Tables 八.派生表 派生表是一个表达式,用于在一个查询的FROM子句的范围内生成表. 例如,在一个SELECT查询的FR ...
- Centos7.3 为php7 安装swoole 扩展
今天心血来潮想在服务器上安装一下swoole扩展 下面列一下教程: xshell进入你的服务器 然后目录自选吧 反正我放在根目录了 下面是扩展链接: wget https://github.co ...
- hdu 4501三重包问题
好好理解一下背包问题 从01包入手 内层的循环 是为了以后求解记录数据 因为只有一个取舍问题 所以只需要一层循环就可以 这里有三个背包 钱 积分 以及免费物品 那么 就需要三重循环 #include& ...
- Java Web 深入分析(1)B/S架构概述
B/S结构即浏览器和服务器结构.它是随着Internet技术的兴起,对C/S结构的一种变化或者改进的结构.在这种结构下,用户工作界面是通过WWW浏览器来实现,极少部分事务逻辑在前端(Browser)实 ...
- Android蓝牙遥控器APP关键代码 guihub项目
package com.car.demo; import java.io.IOException; import java.io.OutputStream; import java.util.UUID ...
- C++ STL 之 函数对象适配器
谓词是指普通函数或重载的 operator()返回值是 bool 类型的函数对象(仿函数).如果operator 接受一个参数,那么叫做一元谓词,如果接受两个参数,那么叫做二元谓词,谓词可作为一个判断 ...
- Redis面试题记录--缓存双写情况下导致数据不一致问题
转载自:https://blog.csdn.net/lzhcoder/article/details/79469123 https://blog.csdn.net/u013374645/article ...
- pcntl
<?php function my_pcntl_wait($childProcessCode){ $pid = pcntl_fork(); if($pid>0){ pcntl_wait($ ...
- linux三剑客grep,sed,awk
grep 官方帮助文档 Usage: grep [OPTION]... PATTERN [FILE]... Search for PATTERN in each FILE or standard in ...