title: 【线性代数】6-5:正定矩阵(Positive Definite Matrices)

categories:

  • Mathematic
  • Linear Algebra

    keywords:
  • Positive Definite Matrices
  • Symmetric Matrices
  • Eigenvalues
  • Eigenvectors

    toc: true

    date: 2017-11-24 11:24:21

Abstract: 关于正定矩阵的相关知识总结,正定矩阵在数学中的一个应用

Keywords: Positive Definite Matrices,Symmetric Matrices,Eigenvalues,Eigenvectors

开篇废话

昨晚出了个新闻,红黄蓝还是什么的,发现我们广大人民热情特别高涨,各种谴责啊,阴谋论啊什么,感受到了什么是人言可畏,当我们的呦呦众口指向我们的敌人的时候或者被人陷害成所谓"敌人"的人的时候,那真是踏上一万只脚让人永世不得超生啊,法律不算数,全按照心情办。经济发展迅速,民智并没有开多大,前天在朋友圈里还卖东西,秀美食美景的可爱萌青年们,然后一瞬间变成了社会主义战士,口诛笔伐,还有之前抵制日货,抵制韩货的,说实话,这种人基本的用途的就是贡献劳动力,然后活在忽悠中,说啥信啥,搞民主投票?这种智商也就告别民主了。

再有一个就是删帖,删帖作为治国理政的必要途径,我觉得可以开发个智能分类系统(没准已经在用了)就是自动删帖,人工删太浪费人力,某些公司为了配合组织,也是让删啥删啥,节操算鸡毛,人民币才是硬道理。

然后就是如果小朋友们受到了侵害而没有执法部门保护,或者是执法部门有不作为的现象,而要依靠广大键盘侠,这不是回到原始社会了么?

小朋友们是全人类的希望,应该得到全社会的爱护!

Positive Definite Matrices

正定矩阵,对这个矩阵印象深刻,知道学了这节以后,才知道,正定矩阵就是"Positive Definite Matrices-正的确定矩阵",这个翻译也是耿直,

Positive Definite Matrices 定义为,对称矩阵,并且所有特征值全部大于0

那么我们第一个大问题就是如何确定一个矩阵是不是正定矩阵呢,求特征值肯定是根本方法,定义都说了,对称矩阵,特征值大于0,求出所有特征值,那么自然明朗了,但是有时候我们只需要知道是不是正定矩阵,而不需要知道特征值,这样的话计算代价有点大,我们需要找点别的招数,来避免求特征值。

接下来我们的目标是:

  1. 找到能快速判断对称矩阵的特征值都是正数
  2. 正定矩阵的重要应用

本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-6-5转载请标明出处

【线性代数】6-5:正定矩阵(Positive Definite Matrices)的更多相关文章

  1. 正定矩阵(positive definite matrix)

    设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M正定矩阵. 正定矩阵在合同变换下可化为标准型, 即对角矩阵. 所有特征值大于零的对称矩阵也是正定矩阵.   ...

  2. 正定矩阵(definite matrix)

    1. 基本定义 在线性规划中,一个对称的 n×n 的实值矩阵 M,如果满足对于任意的非零列向量 z,都有 zTMz>0. 更一般地,对于 n×n 的 Hermitian 矩阵(原矩阵=共轭转置, ...

  3. a positive definite matrix

    https://en.wikipedia.org/wiki/Definite_quadratic_form https://www.math.utah.edu/~zwick/Classes/Fall2 ...

  4. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  5. 【Math for ML】解析几何(Analytic Geometry)

    I. 范数(Norm) 定义: 向量空间\(V\)上的范数(norm)是如下函数: \[ \begin{align} \|·\|:V→R, \notag \\ x→\|x\| \notag \end{ ...

  6. MIT课程

    8.02  Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...

  7. ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)

    IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...

  8. ECCV 2014 Results (16 Jun, 2014) 结果已出

    Accepted Papers     Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...

  9. ICLR 2013 International Conference on Learning Representations深度学习论文papers

    ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...

随机推荐

  1. ARM协处理器CP15寄存器详解

    改自:https://blog.csdn.net/gameit/article/details/13169405 *C2描述的不对,bit[31-14]才是TTB,不是所有的bit去存储ttb.很明显 ...

  2. BZOJ4698 SDOI2008Sandy的卡片(后缀自动机)

    差分后即求多串LCS.先考虑两个串怎么做.对第一个串建SAM,第二个串在上面跑即可,任意时刻走到的节点表示的都是第二个串的当前前缀在第一个串中出现的最长的后缀,具体计算长度时每走一个字符长度+1,跳f ...

  3. css line-height & 图片底部间隙的处理

    前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! 看大牛张鑫旭的视屏可能会理解的更深一些,点击这里 . line-height 的学习 line-heigh ...

  4. (十七)Activitivi5之组任务分配

    一.需求分析 我们在实际业务开发过程中,某一个审批任务节点可以分配一个角色(或者叫做组),然后属于这个角色的任何一个用户都可以去完成这个任务节点的审批 二.案例 2.1 方式一:直接流程图配置中写死 ...

  5. (七)lucene之中文检索和高亮显示以及摘要

    前提:本章节使用lucene5.3.0版本,luke也是此版本的. 1.1  生成索引 package com.shyroke.lucene; import java.io.IOException; ...

  6. 改善C#程序的方法

    写在开头: http://www.cnblogs.com/luminji    157个建议_勘误表 一:属性 属性和方法一样.也可以是virtual和abstract. 条款2:运行时常量(read ...

  7. C#强制回收垃圾

    [DllImport("psapi.dll")] private static extern int EmptyWorkingSet(int hProcess); public v ...

  8. express 和 vue-cli 的博客网站

    已经上传到github地址:https://github.com/13476075014/node-vue/tree/master/mynodeproject/15.TimeBlog # 个人博客系统 ...

  9. ubuntu创建kvm虚拟机

    CPU虚拟化支持 [root@ubuntu~]# egrep -o '(vmx|svm)' /proc/cpuinfo vmx vmx vmx vmx KVM环境 [root@ubuntu ~]# a ...

  10. flask小结

    http通讯过程 https://www.cnblogs.com/andy9468/p/10871079.html 1.flask开发环境 https://www.cnblogs.com/andy94 ...