(模板)poj2947(高斯消元法解同余方程组)
题目链接:https://vjudge.net/problem/POJ-2947
题意:转换题意后就是已知m个同余方程,求n个变量。
思路:
值得学习的是这个模板里消元用到lcm的那一块。注意题目输出的答案在[3,9]之间。
AC代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std; const int maxn=;
int n,m,a[maxn][maxn],x[maxn];
char s1[],s2[]; int gcd(int a,int b){
return b?gcd(b,a%b):a;
} int lcm(int a,int b){
return a/gcd(a,b)*b; //先除后乘
} // 高斯消元法解方程组(Gauss-Jordan elimination).(
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var){
int k,max_r,col=,ta,tb,LCM,temp;
for(int i=;i<var;++i){
x[i]=;
}
for(k=;k<equ&&col<var;++k,++col){
max_r=k;
//找系数绝对值最大的那一行与第k行交换
for(int i=k+;i<equ;++i){
if(abs(a[i][col])>abs(a[max_r][col]))
max_r=i;
}
if(max_r!=k){
for(int i=col;i<var+;++i)
swap(a[max_r][i],a[k][i]);
}
if(!a[k][col]){
--k;
continue;
}
for(int i=k+;i<equ;++i){
if(!a[i][col]) continue;
LCM=lcm(abs(a[i][col]),abs(a[k][col]));
ta=LCM/abs(a[i][col]);
tb=LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<) tb=-tb; //异号的情况是相加
for(int j=col;j<var+;++j){
a[i][j]=((a[i][j]*ta-a[k][j]*tb)%+)%;
}
}
}
//无解的情况
for(int i=k;i<equ;++i){
if(a[i][col]) return -;
}
//无穷解的情况
if(k<var){
return var-k; //返回自由变元的个数
}
//唯一解的情况,增广矩阵中形成严格的上三角阵
for(int i=var-;i>=;--i){
temp=a[i][var];
for(int j=i+;j<var;++j){
if(!a[i][j]) continue;
temp-=a[i][j]*x[j];
temp=(temp%+)%;
}
while(temp%a[i][i]!=) temp+=;
x[i]=(temp/a[i][i])%;
}
return ;
} int tran(char *s){
if(strcmp(s,"MON")==) return ;
else if(strcmp(s,"TUE")==) return ;
else if(strcmp(s,"WED")==) return ;
else if(strcmp(s,"THU")==) return ;
else if(strcmp(s,"FRI")==) return ;
else if(strcmp(s,"SAT")==) return ;
else return ;
} int main(){
while(scanf("%d%d",&n,&m),n||m){
memset(a,,sizeof(a));
for(int i=;i<m;++i){
int k;
scanf("%d%s%s",&k,s1,s2);
a[i][n]=((tran(s2)-tran(s1)+)%+)%;
while(k--){
int t;
scanf("%d",&t);
--t;
++a[i][t];
a[i][t]%=;
}
}
int ans=Gauss(m,n);
if(ans==){
for(int i=;i<n;++i)
if(x[i]<=) x[i]+=;
for(int i=;i<n-;++i)
printf("%d ",x[i]);
printf("%d\n",x[n-]);
}
else if(ans==-){
printf("Inconsistent data.\n");
}
else{
printf("Multiple solutions.\n");
}
}
return ;
}
(模板)poj2947(高斯消元法解同余方程组)的更多相关文章
- poj2947(高斯消元法解同余方程组)
题目链接:https://vjudge.net/problem/POJ-2065 题意:题目看着较复杂,实际上就是给了n个同余方程,解n个未知数. 思路:套高斯消元法的模板即可. AC代码: #inc ...
- hdu 5755 Gambler Bo (高斯消元法解同余方程组)
http://acm.hdu.edu.cn/showproblem.php?pid=5755 题意: n*m矩阵,每个格有数字0/1/2 每选择一个格子,这个格子+2,4方向相邻格子+1 如何选择格子 ...
- C++实现,拓展中国剩余定理——解同余方程组(理论证明和代码实现)
拓展中国剩余定理 前言 记得半年前还写过关于拓展中国剩余定理的博客...不过那时对其理解还不是比较深刻,写的也比较乱. 于是趁学校复习之机,再来重温一下拓展中国剩余定理(以下简称ExCRT) 记得半年 ...
- poj 2947 Widget Factory (高斯消元解同余方程组+判断无解、多解)
http://poj.org/problem?id=2947 血泪史: CE:poj的string类型要加string库,swap不能直接交换数组 WA: x[m-1]也有可能<3啊O(≧口≦) ...
- HDU1573:X问题(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573 题目解析;HDU就是坑,就是因为n,m定义成了__int64就WAY,改成int就A了,无语. 这题 ...
- HDU3579:Hello Kiki(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...
- 洛谷——P3389 【模板】高斯消元法
P3389 [模板]高斯消元法 以下内容都可省略,直接转大佬博客%%% 高斯消元总结 只会背板子的蒟蒻,高斯消元是什么,不知道诶,看到大佬们都会了这个水题,蒟蒻只好也来切一切 高斯消元最大用途就是解多 ...
- 洛谷P3389 【模板】高斯消元法
P3389 [模板]高斯消元法 题目背景 Gauss消元 题目描述 给定一个线性方程组,对其求解 输入输出格式 输入格式: 第一行,一个正整数 n 第二至 n+1行,每行 n+1 个整数,为a1,a ...
- 「LuoguP3389」【模板】高斯消元法
题目背景 Gauss消元 题目描述 给定一个线性方程组,对其求解 输入输出格式 输入格式: 第一行,一个正整数 nn 第二至 n+1n+1行,每行 n+1n+1 个整数,为a_1, a_2 \cdot ...
随机推荐
- 【题解】求细胞数量-C++
题目描述一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右若还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数.(1<=m,n<=100)? 输入输出格式输入格 ...
- form表单 一个input时 回车自动提交
问题描述 form表单中,如果当前表单只有一个input输入框时,单击回车会自动提交当前表单. 解决方案 在当前form表单中添加一个隐藏的input, <input style="d ...
- Razor传值到js
1.Asp.net MVC 3 中Session与ViewBag传值到Js中 http://www.cnblogs.com/wintersun/archive/2012/06/04/2534975.h ...
- java实现文件夹上传
文件上传下载,与传统的方式不同,这里能够上传和下载10G以上的文件.而且支持断点续传. 通常情况下,我们在网站上面下载的时候都是单个文件下载,但是在实际的业务场景中,我们经常会遇到客户需要批量下载的场 ...
- css 计算值函数
css有一些强大的函数: 1. calc 可以混合多种单位来计算 div { font-size: calc(100vw/5 + 1rem - 100px) } 2. max.min.clamp ma ...
- 【java中的static关键字】
文章转自:https://www.cnblogs.com/dolphin0520/p/3799052.html 一.static关键字的用途 在<Java编程思想>P86页有这样一段话: ...
- Leetcode题目300.最长上升子序列(动态规划-中等)
题目描述: 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度 ...
- Linux ldd -- 查看可执行文件所依赖的动态链接库
我们知道“ldd”这个命令主要是被程序员或是管理员用来查看可执行文件所依赖的动态链接库的.是的,这就是这个命令的用处.可是,这个命令比你想像的要危险得多,也许很多黑客通过ldd的安全问题来攻击你的服务 ...
- SQL-W3School-基础:SQL DISTINCT 语句
ylbtech-SQL-W3School-基础:SQL DISTINCT 语句 1.返回顶部 1. 本章讲解 SELECT DISTINCT 语句. SQL SELECT DISTINCT 语句 在表 ...
- java中 label 配合 break continue 使用方法
转 https://www.jianshu.com/p/7954b61bc6ee java中 label 配合 break continue 使用的其实是比较少的. 这种做法在业务代码中比较少见. 在 ...