Redis占用内存大小

我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小。

1、通过配置文件配置

通过在Redis安装目录下面的redis.conf配置文件中添加以下配置设置内存大小

//设置Redis最大占用内存大小为100M
maxmemory 100mb

redis的配置文件不一定使用的是安装目录下面的redis.conf文件,启动redis服务的时候是可以传一个参数指定redis的配置文件的

2、通过命令修改

Redis支持运行时通过命令动态修改内存大小

//设置Redis最大占用内存大小为100M
127.0.0.1:6379> config set maxmemory 100mb
//获取设置的Redis能使用的最大内存大小
127.0.0.1:6379> config get maxmemory

如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB内存

Redis的内存淘汰

既然可以设置Redis最大占用内存大小,那么配置的内存就有用完的时候。那在内存用完的时候,还继续往Redis里面添加数据不就没内存可用了吗?

实际上Redis定义了几种策略用来处理这种情况:

noeviction(默认策略):对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外)

allkeys-lru:从所有key中使用LRU算法进行淘汰

volatile-lru:从设置了过期时间的key中使用LRU算法进行淘汰

allkeys-random:从所有key中随机淘汰数据

volatile-random:从设置了过期时间的key中随机淘汰

volatile-ttl:在设置了过期时间的key中,根据key的过期时间进行淘汰,越早过期的越优先被淘汰

当使用volatile-lru、volatile-random、volatile-ttl这三种策略时,如果没有key可以被淘汰,则和noeviction一样返回错误

如何获取及设置内存淘汰策略

获取当前内存淘汰策略:

127.0.0.1:6379> config get maxmemory-policy

通过配置文件设置淘汰策略(修改redis.conf文件):

maxmemory-policy allkeys-lru

通过命令修改淘汰策略:

127.0.0.1:6379> config set maxmemory-policy allkeys-lru

LRU算法

什么是LRU?

上面说到了Redis可使用最大内存使用完了,是可以使用LRU算法进行内存淘汰的,那么什么是LRU算法呢?

LRU(Least Recently Used),即最近最少使用,是一种缓存置换算法。在使用内存作为缓存的时候,缓存的大小一般是固定的。当缓存被占满,这个时候继续往缓存里面添加数据,就需要淘汰一部分老的数据,释放内存空间用来存储新的数据。这个时候就可以使用LRU算法了。其核心思想是:如果一个数据在最近一段时间没有被用到,那么将来被使用到的可能性也很小,所以就可以被淘汰掉。

使用java实现一个简单的LRU算法

public class LRUCache<k, v> {
//容量
private int capacity;
//当前有多少节点的统计
private int count;
//缓存节点
private Map<k, Node<k, v>> nodeMap;
private Node<k, v> head;
private Node<k, v> tail;
public LRUCache(int capacity) {
if (capacity < 1) {
throw new IllegalArgumentException(String.valueOf(capacity));
}
this.capacity = capacity;
this.nodeMap = new HashMap<>();
//初始化头节点和尾节点,利用哨兵模式减少判断头结点和尾节点为空的代码
Node headNode = new Node(null, null);
Node tailNode = new Node(null, null);
headNode.next = tailNode;
tailNode.pre = headNode;
this.head = headNode;
this.tail = tailNode;
}
public void put(k key, v value) {
Node<k, v> node = nodeMap.get(key);
if (node == null) {
if (count >= capacity) {
//先移除一个节点
removeNode();
}
node = new Node<>(key, value);
//添加节点
addNode(node);
} else {
//移动节点到头节点
moveNodeToHead(node);
}
}
public Node<k, v> get(k key) {
Node<k, v> node = nodeMap.get(key);
if (node != null) {
moveNodeToHead(node);
}
return node;
}
private void removeNode() {
Node node = tail.pre;
//从链表里面移除
removeFromList(node);
nodeMap.remove(node.key);
count--;
}
private void removeFromList(Node<k, v> node) {
Node pre = node.pre;
Node next = node.next;
pre.next = next;
next.pre = pre;
node.next = null;
node.pre = null;
}
private void addNode(Node<k, v> node) {
//添加节点到头部
addToHead(node);
nodeMap.put(node.key, node);
count++;
}
private void addToHead(Node<k, v> node) {
Node next = head.next;
next.pre = node;
node.next = next;
node.pre = head;
head.next = node;
}
public void moveNodeToHead(Node<k, v> node) {
//从链表里面移除
removeFromList(node);
//添加节点到头部
addToHead(node);
}
class Node<k, v> {
k key;
v value;
Node pre;
Node next;
public Node(k key, v value) {
this.key = key;
this.value = value;
}
}
}

上面这段代码实现了一个简单的LUR算法,代码很简单,也加了注释,仔细看一下很容易就看懂。

LRU在Redis中的实现

近似LRU算法

Redis使用的是近似LRU算法,它跟常规的LRU算法还不太一样。近似LRU算法通过随机采样法淘汰数据,每次随机出5(默认)个key,从里面淘汰掉最近最少使用的key。

可以通过maxmemory-samples参数修改采样数量:例:maxmemory-samples 10 maxmenory-samples配置的越大,淘汰的结果越接近于严格的LRU算法

Redis为了实现近似LRU算法,给每个key增加了一个额外增加了一个24bit的字段,用来存储该key最后一次被访问的时间。

Redis3.0对近似LRU的优化

Redis3.0对近似LRU算法进行了一些优化。新算法会维护一个候选池(大小为16),池中的数据根据访问时间进行排序,第一次随机选取的key都会放入池中,随后每次随机选取的key只有在访问时间小于池中最小的时间才会放入池中,直到候选池被放满。当放满后,如果有新的key需要放入,则将池中最后访问时间最大(最近被访问)的移除。

当需要淘汰的时候,则直接从池中选取最近访问时间最小(最久没被访问)的key淘汰掉就行。

LRU算法的对比

我们可以通过一个实验对比各LRU算法的准确率,先往Redis里面添加一定数量的数据n,使Redis可用内存用完,再往Redis里面添加n/2的新数据,这个时候就需要淘汰掉一部分的数据,如果按照严格的LRU算法,应该淘汰掉的是最先加入的n/2的数据。生成如下各LRU算法的对比图(图片来源):

你可以看到图中有三种不同颜色的点:

  • 浅灰色是被淘汰的数据
  • 灰色是没有被淘汰掉的老数据
  • 绿色是新加入的数据

我们能看到Redis3.0采样数是10生成的图最接近于严格的LRU。而同样使用5个采样数,Redis3.0也要优于Redis2.8。

LFU算法

LFU算法是Redis4.0里面新加的一种淘汰策略。它的全称是Least Frequently Used,它的核心思想是根据key的最近被访问的频率进行淘汰,很少被访问的优先被淘汰,被访问的多的则被留下来。

LFU算法能更好的表示一个key被访问的热度。假如你使用的是LRU算法,一个key很久没有被访问到,只刚刚是偶尔被访问了一次,那么它就被认为是热点数据,不会被淘汰,而有些key将来是很有可能被访问到的则被淘汰了。如果使用LFU算法则不会出现这种情况,因为使用一次并不会使一个key成为热点数据。

LFU一共有两种策略:

  • volatile-lfu:在设置了过期时间的key中使用LFU算法淘汰key
  • allkeys-lfu:在所有的key中使用LFU算法淘汰数据

设置使用这两种淘汰策略跟前面讲的一样,不过要注意的一点是这两周策略只能在Redis4.0及以上设置,如果在Redis4.0以下设置会报错

问题

最后留一个小问题,可能有的人注意到了,我在文中并没有解释为什么Redis使用近似LRU算法而不使用准确的LRU算法,可以在评论区给出你的答案,大家一起讨论学习。

Redis如果内存满了怎么办?的更多相关文章

  1. redis内存满了怎么办?

    redis最为缓存数据库,一般用于存储缓存数据,用于缓解数据库压力,但是缓存太多,内存满了怎么办呢.一般有以下几种方法 一.增加内存 redis存储于内存中,数据太多,占用太多内存,那么增加内存就是最 ...

  2. Redis内存满了怎么办(新年快乐)

    Redis内存满了怎么办(新年快乐) 入我相思门,知我相思苦. 长相思兮长相忆,短相思兮无穷极. 一.配置文件 Redis长期使用或者不设置过期时间,导致内存爆满或不足,可以到Redis的配置文件re ...

  3. Redis 内存满了怎么办?这样设置才正确!

    上回在<Redis 数据过期了会被立马删除么?>说到如果过期的数据太多,定时删除无法删除完全(每次删除完过期的 key 还是超过 25%),同时这些 key 再也不会被客户端请求,就无法走 ...

  4. Redis 内存满了怎么办……

    我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小. 1.通过配置文件配置 通过在Redis安装目录 ...

  5. Redis 内存满了怎么办? Redis的内存淘汰策略

    https://juejin.im/post/5d674ac2e51d4557ca7fdd70 Redis占用内存大小 我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限, ...

  6. Redis 系列(04-2)Redis原理 - 内存回收

    目录 Redis 系列(04-2)Redis原理 - 内存回收 Redis 系列目录 1. 过期策略 1.1 定时过期(主动淘汰) 1.2 惰性过期(被动淘汰) 1.3 定期过期 2. 淘汰策略 2. ...

  7. Redis的内存淘汰策略(八)

    一:Redis的AOF是什么? 以日志的形式来记录每个写操作(读操作不记录),将Redis执行过的所有写指令记录下来(读操作不记录),只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构 ...

  8. Redis学习-内存优化

    以下为个人学习Redis的备忘录--内存优化 1.随时查看info memory,了解内存使用状况:127.0.0.1:6379> info memory# Memoryused_memory: ...

  9. Redis设置内存最大占用值

    Redis设置内存最大占用值: Redis设置占用物理机最大的内存 #占用最大20G maxmemory 20480mb Redis设置内存装不下了,有限删除即将过期的 当前已用内存超过maxmemo ...

随机推荐

  1. 用Java在excel单元格中设置超链接

    (一)问题引入 有时候我们在导入数据到excel中时可能要给某个文件或图片设置超链接,例如链接到外网或者是本地的某个目录.我们可以通过Java代码来实现,借助POI库. (二)解决方案 下面直接给出参 ...

  2. C++-HDU3400-Line belt[三分]

    将军饮马问题的升级版 二维平面中要从A到D,给出两条线段AB,CD,分别在线段AB,CD,以及空白处的速度为P,Q,R 求最少用时 由于最优位置满足“凸性”,且两条线段可以等价,所以可以采取三分答案迭 ...

  3. 全网最详细——Testlink在windows环境下搭建;提供环境下载

    参考这篇文章,写的真不错https://www.jianshu.com/p/6c4321de26ea 工具下载 链接:https://pan.baidu.com/s/1_yzCIvsExbfzcRdl ...

  4. SpringMVC-简单参数绑定

    SpringMVC-简单参数绑定    众所周知,springmvc是用来处理页面的一些请求,然后将数据再通过视图返回给用户的,前面的几篇博文中使用的都是静态数据,为了能快速入门springmvc,在 ...

  5. QT版本

    最近在linux下安装qt:发现主要的问题是qt的版本问题:下面来谈谈各个版本的理解 Qt 的版本是按照不同的图形系统来划分的,目前分为五个版本: Win: 适用于Miccrosoft Windows ...

  6. R parallel包学习笔记2

    这个部分我在datacamp上面学习笔记,可视化的性能很差,使用的函数也很少. 可以参考一下大佬的博客园个人感觉他们讲的真的很详细 https://cosx.org/2016/09/r-and-par ...

  7. mybatis(二):缘由

    本是Apache的一个开源项目iBatis 2010年,iBatis由Apache Software Foundation(软件基金会)迁移到了Google Code(代码托管平台),并改名为MyBa ...

  8. 洛谷P1177 【模板】快速排序

    https://www.luogu.org/problem/P1177 #include<bits/stdc++.h> using namespace std; int n; multis ...

  9. CrystalDecisions.Windows.Forms文件

    1.CrystalDecisions.Windows.Forms 相关dll文件 CrystalDecisions.Crystalreports.Engine.dllCrystalDecisions. ...

  10. 对malloc和free和数据结构和算法的一些感触

    当年2013.9.大一学c程序设计,因为当时还没有学数据结构,只学了程序设计,大学上的课真的是承上启下的不好,刚学到这里,就断了旋一样,对这个malloc和free一直很迷惑,这些狗玩意是干嘛,因为用 ...