题目传送门:POJ 2318 TOYS

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2 题目大意:   给你一个盒子,里面有n个隔板,n+1个区间:0~n 里面放m个物品,问每个区间有多少个物品。 解题思路:
  
  对于每个物品都进行二分来查找区间,通过叉积来判断点与直线的位置关系,进而确定这个物品在哪个区间。
(我之前是想分别将线段和点进行排序然后依次比较就行了 太天真了...
 
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = +;
int num[N];
struct point
{
double x,y;
point(double a = , double b = ) { x = a, y = b; }
double operator ^(const point& b) const { return x * b.y - y * b.x; }/// 叉积
point operator - (const point& b) const { return point(x - b.x, y - b.y); }
}p;
struct line
{
int id;
point s,e;
}l[N]; bool _is(line c,point p)///判断点是否在直线右边
{
point p1=c.s-p,p2=c.e-p;
double ans=p1^p2;
if (ans>) return true;
return false;
}
int main()
{
int n,m;
point b,d;
double u,v;
while(~scanf("%d",&n)&&n)
{
memset(num,,sizeof(num));
scanf("%d%lf%lf%lf%lf",&m,&b.x,&b.y,&d.x,&d.y);
l[].s=b;l[].e.x=b.x;l[].e.y=d.y;
l[n+].s.x=d.x;l[n+].s.y=b.y;l[n+].e=d;
l[n+].id=n+;
for (int i=;i<=n;i++)
{
scanf("%lf%lf",&u,&v);
l[i].s.x=u,l[i].s.y=b.y;
l[i].e.x=v,l[i].e.y=d.y;
l[i].id=i;
}
for (int i=;i<m;i++)
{
scanf("%lf%lf",&p.x,&p.y);
int L=,R=n+;
while(L<R)
{
int mid=(L+R)/;
if (_is(l[mid],p)) L=mid+;
else R=mid-;
}
while (!_is(l[L],p)) --L;
num[L]++;
}
for (int i=;i<=n;i++) printf("%d: %d\n",i,num[i]);
printf("\n");
}
return ;
}
同类型题:Toy Storage POJ - 2398  
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = +;
int num1[N],num2[N];
struct point
{
double x,y;
point(double a = , double b = ) { x = a, y = b; }
double operator ^(const point& b) const { return x * b.y - y * b.x; }/// 叉积
point operator - (const point& b) const { return point(x - b.x, y - b.y); }
}p;
struct line
{
int id;
point s,e;
}l[N];
bool cmp(line a,line b)
{
return a.s.x<b.s.x;
}
bool _is(line c,point p)///判断点是否在直线右边
{
point p1=c.s-p,p2=c.e-p;
double ans=p1^p2;
if (ans>) return true;
return false;
}
int main()
{
int n,m;
point b,d;
double u,v;
while(~scanf("%d",&n)&&n)
{
memset(num1,,sizeof(num1));
memset(num2,,sizeof(num2));
scanf("%d%lf%lf%lf%lf",&m,&b.x,&b.y,&d.x,&d.y);
l[].s=b;l[].e.x=b.x;l[].e.y=d.y;
l[n+].s.x=d.x;l[n+].s.y=b.y;l[n+].e=d;
l[n+].id=n+;
for (int i=;i<=n;i++)
{
scanf("%lf%lf",&u,&v);
l[i].s.x=u,l[i].s.y=b.y;
l[i].e.x=v,l[i].e.y=d.y;
l[i].id=i;
}
sort(l+,l+n+,cmp);//与上题比多了个排序,因为它的输入不是按顺序的
for (int i=;i<m;i++)
{
scanf("%lf%lf",&p.x,&p.y);
int L=,R=n+;
while(L<R)
{
int mid=(L+R)/;
if (_is(l[mid],p)) L=mid+;
else R=mid-;
}
while (!_is(l[L],p)) --L;
num1[L]++;
}
printf("Box\n");
for (int i=;i<=n;i++) num2[num1[i]]++;
//这题所求有点不同
for (int i=;i<=n;i++)
if (num2[i]) printf("%d: %d\n",i,num2[i]);
}
return ;
}


POJ 2318 TOYS(叉积+二分)的更多相关文章

  1. POJ 2318 TOYS (叉积+二分)

    题目: Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  2. 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)

    TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...

  3. POJ 2318 TOYS 叉积

    题目大意:给出一个长方形盒子的左上点,右下点坐标.给出n个隔板的坐标,和m个玩具的坐标,求每个区间内有多少个玩具. 题目思路:利用叉积判断玩具在隔板的左方或右方,并用二分优化查找过程. #includ ...

  4. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  5. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  6. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  7. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  8. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  9. POJ 2318/2398 叉积性质

    2318 2398 题意:给出n条线将一块区域分成n+1块空间,再给出m个点,询问这些点在哪个空间里. 思路:由于只要求相对位置关系,而对具体位置不关心,那么易使用叉积性质得到相对位置关系(左侧/右侧 ...

随机推荐

  1. 谈谈数据库的 ACID(转)

    一.事务 定义:所谓事务,它是一个操作序列,这些操作要么都执行,要么都不执行,它是一个不可分割的工作单位. 准备工作:为了说明事务的ACID原理,我们使用银行账户及资金管理的案例进行分析. 二.ACI ...

  2. 洛谷P3366 【模板】最小生成树 题解

    题目链接:https://www.luogu.org/problem/P3366 最小生成树模板题. Kruskal算法 算法思想:给边按边权从小到大排序,然后遍历每一条边,如果边上的两个点不在同一个 ...

  3. [转]Spring历史版本变迁和如今的生态帝国

    前两篇: 为什么要有Spring? 为什么要有Spring AOP? 前两篇从Web开发史的角度介绍了我们在开发的时候遇到的一个个坑,然后一步步衍生出Spring Ioc和Spring AOP的概念雏 ...

  4. H3C IP地址拒绝及释放

  5. 【js】vue 2.5.1 源码学习(二) 策略合并

     一.  整体思路     1 首先是代码的大体构造,先判断引入代码的环境,即对应amd 和cmd的处理     2 vue_init 需要借助 initMinxin    ==>>> ...

  6. linux 原子变量

    有时, 一个共享资源是一个简单的整数值. 假设你的驱动维护一个共享变量 n_op, 它告 知有多少设备操作目前未完成. 正常地, 即便一个简单的操作例如: n_op++; 可能需要加锁. 某些处理器可 ...

  7. H3C 端口绑定典型配置举例

  8. 新书《iOS编程(第6版)》抢鲜试读

    我最近翻译了Big Nerd Ranch的<iOS编程(第6版)>.我用了大半年时间,尽可能做到通顺易懂.不足之处请大家多多指正.感谢辛苦审校的丁道骏同学. 这本书得过Jolt大奖,原书在 ...

  9. hadoop中 namenode的持久化

    一.为什么namenode持久化 namenode通过内存存储hdfs集群的元数据(目录结构 文件信息 块对应关系),如果内存出现问题,那么会数据丢失,需要通过持久化,把内存中的数据定期的存储在硬盘中 ...

  10. Kafka学习笔记(四)—— API使用

    Kafka学习笔记(四)-- API使用 1.Producer API 1.1 消息发送流程 Kafka的Producer发送消息采用的是异步发送的方式.在消息发送的过程中,涉及到了两个线程--mai ...