题目传送门:POJ 2318 TOYS

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2 题目大意:   给你一个盒子,里面有n个隔板,n+1个区间:0~n 里面放m个物品,问每个区间有多少个物品。 解题思路:
  
  对于每个物品都进行二分来查找区间,通过叉积来判断点与直线的位置关系,进而确定这个物品在哪个区间。
(我之前是想分别将线段和点进行排序然后依次比较就行了 太天真了...
 
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = +;
int num[N];
struct point
{
double x,y;
point(double a = , double b = ) { x = a, y = b; }
double operator ^(const point& b) const { return x * b.y - y * b.x; }/// 叉积
point operator - (const point& b) const { return point(x - b.x, y - b.y); }
}p;
struct line
{
int id;
point s,e;
}l[N]; bool _is(line c,point p)///判断点是否在直线右边
{
point p1=c.s-p,p2=c.e-p;
double ans=p1^p2;
if (ans>) return true;
return false;
}
int main()
{
int n,m;
point b,d;
double u,v;
while(~scanf("%d",&n)&&n)
{
memset(num,,sizeof(num));
scanf("%d%lf%lf%lf%lf",&m,&b.x,&b.y,&d.x,&d.y);
l[].s=b;l[].e.x=b.x;l[].e.y=d.y;
l[n+].s.x=d.x;l[n+].s.y=b.y;l[n+].e=d;
l[n+].id=n+;
for (int i=;i<=n;i++)
{
scanf("%lf%lf",&u,&v);
l[i].s.x=u,l[i].s.y=b.y;
l[i].e.x=v,l[i].e.y=d.y;
l[i].id=i;
}
for (int i=;i<m;i++)
{
scanf("%lf%lf",&p.x,&p.y);
int L=,R=n+;
while(L<R)
{
int mid=(L+R)/;
if (_is(l[mid],p)) L=mid+;
else R=mid-;
}
while (!_is(l[L],p)) --L;
num[L]++;
}
for (int i=;i<=n;i++) printf("%d: %d\n",i,num[i]);
printf("\n");
}
return ;
}
同类型题:Toy Storage POJ - 2398  
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = +;
int num1[N],num2[N];
struct point
{
double x,y;
point(double a = , double b = ) { x = a, y = b; }
double operator ^(const point& b) const { return x * b.y - y * b.x; }/// 叉积
point operator - (const point& b) const { return point(x - b.x, y - b.y); }
}p;
struct line
{
int id;
point s,e;
}l[N];
bool cmp(line a,line b)
{
return a.s.x<b.s.x;
}
bool _is(line c,point p)///判断点是否在直线右边
{
point p1=c.s-p,p2=c.e-p;
double ans=p1^p2;
if (ans>) return true;
return false;
}
int main()
{
int n,m;
point b,d;
double u,v;
while(~scanf("%d",&n)&&n)
{
memset(num1,,sizeof(num1));
memset(num2,,sizeof(num2));
scanf("%d%lf%lf%lf%lf",&m,&b.x,&b.y,&d.x,&d.y);
l[].s=b;l[].e.x=b.x;l[].e.y=d.y;
l[n+].s.x=d.x;l[n+].s.y=b.y;l[n+].e=d;
l[n+].id=n+;
for (int i=;i<=n;i++)
{
scanf("%lf%lf",&u,&v);
l[i].s.x=u,l[i].s.y=b.y;
l[i].e.x=v,l[i].e.y=d.y;
l[i].id=i;
}
sort(l+,l+n+,cmp);//与上题比多了个排序,因为它的输入不是按顺序的
for (int i=;i<m;i++)
{
scanf("%lf%lf",&p.x,&p.y);
int L=,R=n+;
while(L<R)
{
int mid=(L+R)/;
if (_is(l[mid],p)) L=mid+;
else R=mid-;
}
while (!_is(l[L],p)) --L;
num1[L]++;
}
printf("Box\n");
for (int i=;i<=n;i++) num2[num1[i]]++;
//这题所求有点不同
for (int i=;i<=n;i++)
if (num2[i]) printf("%d: %d\n",i,num2[i]);
}
return ;
}


POJ 2318 TOYS(叉积+二分)的更多相关文章

  1. POJ 2318 TOYS (叉积+二分)

    题目: Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  2. 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)

    TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...

  3. POJ 2318 TOYS 叉积

    题目大意:给出一个长方形盒子的左上点,右下点坐标.给出n个隔板的坐标,和m个玩具的坐标,求每个区间内有多少个玩具. 题目思路:利用叉积判断玩具在隔板的左方或右方,并用二分优化查找过程. #includ ...

  4. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  5. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  6. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  7. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  8. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  9. POJ 2318/2398 叉积性质

    2318 2398 题意:给出n条线将一块区域分成n+1块空间,再给出m个点,询问这些点在哪个空间里. 思路:由于只要求相对位置关系,而对具体位置不关心,那么易使用叉积性质得到相对位置关系(左侧/右侧 ...

随机推荐

  1. HBuider快捷键

    朋友推荐用Hbuilder编辑器,看了下Hbuilder官网和那视频,感觉牛逼哄哄的, 自己也就体验了一下,打开Hbuilder的快捷键列表,每个快捷键都体验了一下,以下展示出来的,每一个都是精华,每 ...

  2. 洛谷P2719 搞笑世界杯 题解 概率DP入门

    作者:zifeiy 标签:概率DP 题目链接:https://www.luogu.org/problem/P2719 我们设 f[n][m] 用于表示还剩下n张A类票m张B类票时最后两张票相同的概率, ...

  3. 4-3 xpath的用法

  4. H5 FileReader读取文件

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. 2018-10-22-win10-uwp-自定义控件入门

    title author date CreateTime categories win10 uwp 自定义控件入门 lindexi 2018-10-22 09:47:54 +0800 2018-10- ...

  6. linux 重用 short 为 I/O 内存

    short 例子模块, 在存取 I/O 端口前介绍的, 也能用来存取 I/O 内存. 为此, 你必须告 诉它使用 I/O 内存在加载时; 还有, 你需要改变基地址来使它指向你的 I/O 区. 例如, ...

  7. linux alloc_pages 接口

    为完整起见, 我们介绍另一个内存分配的接口, 尽管我们不会准备使用它直到 15 章. 现 在, 能够说 struct page 是一个描述一个内存页的内部内核结构. 如同我们将见到的, 在内核中有许多 ...

  8. win10 uwp 录制任意应用屏幕

    在 1803 可以使用 Windows.Graphics.Capture 捕获屏幕,可以用来录制应用的窗口 通过 CompositionAPI 和 win2d 可以作为 D3D 绘制,通过 Direc ...

  9. Oracle Net Manager 的使用方法(监听的配置方法)

    一,在服务端配置oracle端口 win+R  输入netca 弹出如下窗口后 选择监听程序配置,点击下一步 二.配置端口后使用Telnet工具调试端口是否联通 在命令行输入telnet 服务器ip ...

  10. Python3_函数参数传递、可变与不可变对象、变量作用域、函数返回值

    参数传递: 在 python 中,类型属于对象,变量是没有类型的:(变量都仅仅是一个对象的引用,没有类型之分)a=[1,2,3] a="Runoob" 以上代码中,[1,2,3] ...