哈夫曼树 动态数组的使用vector
给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb。
2. 重复步骤1,直到{pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
5 3 8 2 9
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
int main(){
int n,t,len,s1,ss=;
cin>>n;
vector<int> s;
for(int i = ;i < n;i++){
cin>>t;
s.push_back(t);
}
//cout<<s.size();
while(s.size()>=){
sort(s.begin(),s.end());
s1=s[]+s[];
s.erase(s.begin()+);
s.erase(s.begin());
s.push_back(s1);
ss=ss+s1;
}
cout<<ss;
return ;
}
哈夫曼树 动态数组的使用vector的更多相关文章
- C++哈夫曼树编码和译码的实现
一.背景介绍: 给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的 ...
- 哈夫曼树;二叉树;二叉排序树(BST)
优先队列:priority_queue<Type, Container, Functional>Type 为数据类型, Container 为保存数据的容器,Functional 为元素比 ...
- 哈夫曼树的构建(C语言)
哈夫曼树的构建(C语言) 算法思路: 主要包括两部分算法,一个是在数组中找到权值最小.且无父结点两个结点位置,因为只有无父结点才能继续组成树: 另一个就是根据这两个结点来修改相关结点值. 结构定义 ...
- [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)
一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...
- 数据结构之C语言实现哈夫曼树
1.基本概念 a.路径和路径长度 若在一棵树中存在着一个结点序列 k1,k2,……,kj, 使得 ki是ki+1 的双亲(1<=i<j),则称此结点序列是从 k1 到 kj 的路径. 从 ...
- 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 哈夫曼树(三)之 Java详解
前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:htt ...
- 哈夫曼树(二)之 C++详解
上一章介绍了哈夫曼树的基本概念,并通过C语言实现了哈夫曼树.本章是哈夫曼树的C++实现. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载 ...
- 哈夫曼树(一)之 C语言详解
本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若 ...
随机推荐
- POJ_1006_中国剩余
http://poj.org/problem?id=1006 中国剩余定理用来解求模方程组,用到了逆元. 这题三个数互质,直接用扩展欧几里德可得逆元. #include<iostream> ...
- HDU6440 Dream(费马小定理+构造) -2018CCPC网络赛1003
题意: 给定素数p,定义p内封闭的加法和乘法,使得$(m+n)^p=m^p+n^p$ 思路: 由费马小定理,p是素数,$a^{p-1}\equiv 1(mod\;p)$ 所以$(m+n)^{p}\eq ...
- android 基础学习笔记2
1.容器布局 一.线性布局 (LineaLayout) 方向:orientation =vertical / horizontal 重力(对齐) :gravity =bottom/right/left ...
- centos7 安装 iRedmail 后 给nginx添加虚拟主机
iRedmail安装参考官方文档和 https://ywnz.com/linuxyffq/4563.html 准备工作 更新操作系统 yum update -y 安装必要组件 yum install ...
- Hapi+MySql项目实战路由初始化(二)
配置路由规则 将路由文件放在routes文件夹里,修改‘Server.js’文件,增加如下代码: 我们这里指明了require('./routes') routes文件夹,require可以文件但是不 ...
- vscode安装使用
1.新建文件:cmd+n2.设置默认浏览器: https://blog.csdn.net/zSY_snake/article/details/83449571 3.view in browser不支持 ...
- [shell] shell 变量生命周期, source, export
1. shell 的派生 用户登录到Linux系统后,系统将启动一个用户shell.在这个shell中,可以使用shell命令, 或声明变量,也可以创建并运行shell脚本程序.运行shell脚本程序 ...
- JavaScript-其他设计模式
其他设计模式 JavaScript 中不常用 对应不到经典场景 原型模式-行为型 clone 自己,生成一个新对象 java 默认有 clone 接口,不用自己实现 //'object.creat'用 ...
- Maven 仓库、坐标、常用命令
maven中的仓库 需要jar包时,先到本地仓库中找,没有就从中央仓库去下载到本地仓库. 中央仓库很多都在国外,下载速度慢.国内的一些公司在自己的服务器上搭建了maven仓库(中央仓库的镜像),供内部 ...
- sql对于表格中列的删改
mysql与oracle char为定长字符串 var为可变字符串 修改表名:rename table1 to table2:(mysql) alter table1 rename to table2 ...