PP: Sequence to sequence learning with neural networks
From google institution;
1. Before this, DNN cannot be used to map sequences to sequences. In this paper, we propose a sequence learning that makes minimal assumptions on the sequence structure.
use lstm to map the input sequence to a vector of a fixed dimensionality;
input sequence-----> lstm -----> vector -----> decoder(lstm) -----> target sequence.
translation task;
Limitation: Despite their flexibility and power, DNNs can only be applied to problems whose inputs and targets can be sensibly encoded with vectors of fixed dimensionality.
Sequential problem: speech recognition and machine translation.
Before: DNNs require that the dimensionality of the inputs and outputs is known and fixed.
Problem: sequence to sequence problems.
PP: Sequence to sequence learning with neural networks的更多相关文章
- 【论文笔记】Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphs 2018-01-17 21:41:57 [Introduction] 这篇 paper 是发表在 ...
- 《MATLAB Deep Learning:With Machine Learning,Neural Networks and Artificial Intelligence》选记
一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as ...
- [C1W4] Neural Networks and Deep Learning - Deep Neural Networks
第四周:深层神经网络(Deep Neural Networks) 深层神经网络(Deep L-layer neural network) 目前为止我们学习了只有一个单独隐藏层的神经网络的正向传播和反向 ...
- [C1W3] Neural Networks and Deep Learning - Shallow neural networks
第三周:浅层神经网络(Shallow neural networks) 神经网络概述(Neural Network Overview) 本周你将学习如何实现一个神经网络.在我们深入学习具体技术之前,我 ...
- Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...
- Sequence to Sequence Learning with Neural Networks论文阅读
论文下载 作者(三位Google大佬)一开始提出DNN的缺点,DNN不能用于将序列映射到序列.此论文以机器翻译为例,核心模型是长短期记忆神经网络(LSTM),首先通过一个多层的LSTM将输入的语言序列 ...
- Coursera, Deep Learning 1, Neural Networks and Deep Learning - week4, Deep Neural Networks
Deep Neural Network Getting your matrix dimention right 选hyper-pamameter 完全是凭经验 补充阅读: cost 函数的计算公式: ...
- Coursera, Deep Learning 1, Neural Networks and Deep Learning - week1, Introduction to deep learning
整个deep learing 系列课程主要包括哪些内容 Intro to Deep learning
- Coursera, Deep Learning 1, Neural Networks and Deep Learning - week3, Neural Networks Basics
NN representation 这一课主要是讲3层神经网络 下面是常见的 activation 函数.sigmoid, tanh, ReLU, leaky ReLU. Sigmoid 只用在输出0 ...
随机推荐
- 医院信息集成平台(ESB)实施、建设方案
医院信息集成平台(ESB)实施.建设方案 基于中立.标准.开放的IT架构和数据标准,打造插拔式医院应用生态. 解决方案 基于ESB集成总线,构建医院信息化建设顶层设计. ...
- Kotlin Tutorials系列文章
Kotlin Tutorials系列文章 想写一个有实用价值的Kotlin笔记, 让一线开发一看就懂, 看完就能上手. 当然官方文档更有参考价值了. 这个系列相对于官方文档的大而全来说, 最主要优势是 ...
- MySql学习-1.MySql的安装:
1.安装包的下载(mysql-v5.7.25 )(NavicatforMySQL_11.2.15): 链接:https://pan.baidu.com/s/166hyyYd3DMjYhMwdW805F ...
- Elasticsearch之增加和删除索引
增加索引 利用postMan工具发送restfulAPI添加索引库 请求方式为put代表添加 创建索引index时映射mapping 请求URL: 使用put发送http://localhost:92 ...
- C# aggregateexception flatten innerexceptions
static void AggregateExceptionsDemo() { var task1 = Task.Factory.StartNew(() => { var child1 = Ta ...
- 基于S2SH开发学生考勤管理系统 附源码
开发环境: Windows操作系统开发工具:Eclipse+Jdk+Tomcat+mysql数据库 运行效果图 源码及原文链接:http://javadao.xyz/forum.php?mod=vie ...
- 【Android】Retrofi的基础使用教程
文章参考学习自 阳光沙滩 ,是我在B站上发现的宝藏Up主,超级棒! 在前段时间我写了一个java web后台,想做一个安卓端的打卡社区,后来发现请求和解析过于麻烦,就耽搁了. 趁着空闲,研究了一下大部 ...
- Go String
在 Go 语言中, 字符串是基础数据类型之一, 关键字为 string. 变量声明 字符串变量的声明如下: // 声明一个字符串类型的变量 s, 未赋予初始值时默认为零值"" va ...
- 重写了下Ajax请求Webservice,顺便复习一下Javascript的闭包概念
var AjaxRequest = function(){ //返回处理结果的回调函数 this.agentCallBack = {}; //javascript 调用domino代理的方法. thi ...
- AE工程渲染的时间缓慢,两种方法减少对AE工程渲染的时间!
AE工程渲染的时间缓慢,两种方法减少对AE工程渲染的时间!3秒的片头,渲染时间竟然要花1个多小时,很多新手都产生过这样的疑问?是哪里不对吗?如何才能减少渲染视频的时间?且听我一一道来.主要原因是:工程 ...