[TJOI2009] 猜数字 - 中国剩余定理
现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示。其中第二组中的数字是两两互素的。求最小的非负整数n,满足对于任意的i,n - ai能被bi整除。
Solution
即 \(n=a_i \ mod \ b_i\)
裸CRT
但是我很懒所以用了 EXCRT 的板子
(然后发现板子的 Note 又写错了)
#include <bits/stdc++.h>
using namespace std;
#define int long long
namespace excrt {
const int maxn=100010;
int n;
int ai[maxn],bi[maxn]; //x=b%a
int mul(int a,int b,int mod){
int res=0;
while(b>0){
if(b&1) res=(res+a)%mod;
a=(a+a)%mod;
b>>=1;
}
return res;
}
int exgcd(int a,int b,int &x,int &y){
if(b==0){x=1;y=0;return a;}
int gcd=exgcd(b,a%b,x,y);
int tp=x;
x=y; y=tp-a/b*y;
return gcd;
}
int solve(){
int x,y,k;
int M=bi[1],ans=ai[1];
for(int i=2;i<=n;i++){
int a=M,b=bi[i],c=(ai[i]-ans%b+b)%b;
int gcd=exgcd(a,b,x,y),bg=b/gcd;
if(c%gcd!=0) return -1;
x=mul(x,c/gcd,bg);
ans+=x*M;
M*=bg;
ans=(ans%M+M)%M;
}
return (ans%M+M)%M;
}
}
const int N = 15;
int a[N],b[N],n;
signed main() {
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++) cin>>b[i];
for(int i=1;i<=n;i++) a[i]=(a[i]%b[i]+b[i])%b[i];
for(int i=1;i<=n;i++) excrt::ai[i]=a[i];
for(int i=1;i<=n;i++) excrt::bi[i]=b[i];
excrt::n=n;
cout<<excrt::solve();
}
[TJOI2009] 猜数字 - 中国剩余定理的更多相关文章
- 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)
洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...
- 数论之同余性质 线性同余方程&拔山盖世BSGS&中国剩余定理
先记录一下一些概念和定理 同余:给定整数a,b,c,若用c不停的去除a和b最终所得余数一样,则称a和b对模c同余,记做a≡b (mod c),同余满足自反性,对称性,传递性 定理1: 若a≡b (mo ...
- (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...
- CRT【p3868】[TJOI2009]猜数字
Description 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n ...
- [Luogu3868] [TJOI2009]猜数字
题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...
- [TJOI2009]猜数字(洛谷 3868)
题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...
- 《孙子算经》之"物不知数"题:中国剩余定理
1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数. 如果 m ...
- POJ 1006 中国剩余定理
#include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...
- [TCO 2012 Round 3A Level3] CowsMooing (数论,中国剩余定理,同余方程)
题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60 ...
随机推荐
- 学会springboot多环境配置方案不用5分钟
一 前言 本篇文章的主题是在springboot中写多个配置文件,指定让个配置文件生效,以便于达到在开发环境,测试环境,线上环境根据不同的配置灵活应用:读完本篇你将获得,学会springboot的多环 ...
- SAP 序列号与库存关联起来?
SAP 序列号与库存关联起来? SAP系统标准功能可以实现序列号管理.其系统配置也不复杂,但是不少企业却使用不起来.笔者参与的诸多项目里,只有现在所在的项目里有启用序列号管理.基于项目客户所在行业,以 ...
- 反射机制(reflection)
一.反射: 1.反射指可以在运行时加载.探知.使用编译期间完全未知的类. 2.程序在运行状态中,可以动态加载一个只有名称的类,对于任意一个已加载的类,都能够知道这个类的所有属性和方法: 对于任意一个对 ...
- 使用十年的电脑在家用记事本调试 .NET 程序
引言 春节放假回老家,没有把笔记本电脑带上,由于肺炎疫情的原因只能呆在家里,写的一个WinForm程序无法正常使用,需要及时修复,看我如何使用家里十年的台式机来调试修复 .NET 应用程序. WinF ...
- linux | 一次网卡故障处理
问题 在centos7系统中,设置ifcfg-eth*文件时,总会纠结NAME和DEVICE到底写哪个或哪个真实生效.这里实例演示下 这是网卡ifcfg-eth4配置文件.没写DEVICE,用的NAM ...
- 学习使用add()()()迭代调用,柯里化处理
将多个参数的函数,转换成单参数函数链 以add()()()举例 function add(){ 使用数组保存参数 let _args = Array.prototype.slice.call(argu ...
- IDEA最新注册码 (亲测有效,可激活至 2089 年~)
申明:本教程 IntelliJ IDEA 破解补丁.激活码均收集于网络,请勿商用,仅供个人学习使用,如有侵权,请联系作者删除. 分享IDEA最新注册码 (亲测有效,可激活至 2089 年~) 注意 本 ...
- 离散对数及其拓展 大步小步算法 BSGS
离散对数及其拓展 离散对数是在群Zp∗Z_{p}^{*}Zp∗而言的,其中ppp是素数.即在在群Zp∗Z_{p}^{*}Zp∗内,aaa是生成元,求关于xxx的方程ax=ba^x=bax=b的解, ...
- ECMAScript 6基础
ECMAScript 和 JavaScript 是什么关系? 1996 年 11 月,JavaScript 的创造者 Netscape 公司,希望JavaScript能够成为国际标准,将其提交给标准化 ...
- Angular2的环境构筑
1.nodejs安装 https://nodejs.org/en/download/ 2.环境变量设定 Path->\node-v10.16.3-win-x64 3.在cmd下输 ...