现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示。其中第二组中的数字是两两互素的。求最小的非负整数n,满足对于任意的i,n - ai能被bi整除。

Solution

即 \(n=a_i \ mod \ b_i\)

裸CRT

但是我很懒所以用了 EXCRT 的板子

(然后发现板子的 Note 又写错了)

#include <bits/stdc++.h>
using namespace std; #define int long long
namespace excrt {
const int maxn=100010;
int n;
int ai[maxn],bi[maxn]; //x=b%a
int mul(int a,int b,int mod){
int res=0;
while(b>0){
if(b&1) res=(res+a)%mod;
a=(a+a)%mod;
b>>=1;
}
return res;
}
int exgcd(int a,int b,int &x,int &y){
if(b==0){x=1;y=0;return a;}
int gcd=exgcd(b,a%b,x,y);
int tp=x;
x=y; y=tp-a/b*y;
return gcd;
}
int solve(){
int x,y,k;
int M=bi[1],ans=ai[1];
for(int i=2;i<=n;i++){
int a=M,b=bi[i],c=(ai[i]-ans%b+b)%b;
int gcd=exgcd(a,b,x,y),bg=b/gcd;
if(c%gcd!=0) return -1;
x=mul(x,c/gcd,bg);
ans+=x*M;
M*=bg;
ans=(ans%M+M)%M;
}
return (ans%M+M)%M;
}
} const int N = 15;
int a[N],b[N],n; signed main() {
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++) cin>>b[i];
for(int i=1;i<=n;i++) a[i]=(a[i]%b[i]+b[i])%b[i];
for(int i=1;i<=n;i++) excrt::ai[i]=a[i];
for(int i=1;i<=n;i++) excrt::bi[i]=b[i];
excrt::n=n;
cout<<excrt::solve();
}

[TJOI2009] 猜数字 - 中国剩余定理的更多相关文章

  1. 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)

    洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...

  2. 数论之同余性质 线性同余方程&拔山盖世BSGS&中国剩余定理

    先记录一下一些概念和定理 同余:给定整数a,b,c,若用c不停的去除a和b最终所得余数一样,则称a和b对模c同余,记做a≡b (mod c),同余满足自反性,对称性,传递性 定理1: 若a≡b (mo ...

  3. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  4. CRT【p3868】[TJOI2009]猜数字

    Description 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n ...

  5. [Luogu3868] [TJOI2009]猜数字

    题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...

  6. [TJOI2009]猜数字(洛谷 3868)

    题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...

  7. 《孙子算经》之"物不知数"题:中国剩余定理

    1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数.  如果 m ...

  8. POJ 1006 中国剩余定理

    #include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...

  9. [TCO 2012 Round 3A Level3] CowsMooing (数论,中国剩余定理,同余方程)

    题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60 ...

随机推荐

  1. Git安装配置及第一次上传项目到GitHub

    平时的学习工作少不了保存自己的Code到代码库,这里必须要使用到Git与GitHub. 1.   关于Git的安装 下载Git:下载地址:https://git-scm.com/downloads  ...

  2. Mysql:初识MySQL

    转载自:https://www.cnblogs.com/hellokuangshen/archive/2019/01/09/10246029.html Mysql:初识MySQL 只会写代码的是码农: ...

  3. mybatis postgresql 批量删除

    一.需求介绍 前端是一个列表页面,列表可以进行复选框的选择,后台进行关联表数据的删除. 二.框架介绍 springboot+mybatis 数据库用的postgresql 三.具体代码(前端js) 1 ...

  4. 限制input输入框只能输入 数字

    <input type="text" oninput = "value=value.replace(/[^\d]/g,'')">

  5. 最短路问题 Dijkstra算法- 路径还原

    // 路径还原 // 求最短路,并输出最短路径 // 在单源最短路问题中我们很容易想到,既然有许多条最短路径,那将之都存储下来即可 // 但再想一下,我们是否要把所有的最短路径都求出来呢? // 实际 ...

  6. SpringBoot缓存 --(二)Redis单机缓存

    pom.xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...

  7. JS淘宝小广告

    <!DOCTYPE html> <html lang="en"> <head>     <meta charset="UTF-8 ...

  8. Warning: curl_setopt() [function.curl-setopt]: CURLOPT_FOLLOWLOCATION cannot be activated when in safe_mode or an open_basedir is set…

    php打印小票错误提示:Warning: curl_setopt() [function.curl-setopt]: CURLOPT_FOLLOWLOCATION cannot be activate ...

  9. 关于javascript中的内置函数

    (1) parseInt()函数 语法:parseInt(string,[n])   该函数主要将首位为数字的字符串转化为数字,若该字符串不是以数字开头,则返回NaN; n是用于指出字符串中的数据是几 ...

  10. mysql升级到5.7

    最近遇到一个问题,执行下列语句会报错: CREATE TABLE `t_user` ( `USER_ID` bigint() NOT NULL AUTO_INCREMENT COMMENT '用户ID ...