spark 1.6 创建语句

在Spark1.6中我们使用的叫Hive on spark,主要是依赖hive生成spark程序,有两个核心组件SQLcontext和HiveContext。

这是Spark 1.x 版本的语法

//set up the spark configuration and create contexts
val sparkConf = new SparkConf().setAppName("SparkSessionZipsExample").setMaster("local")
// your handle to SparkContext to access other context like SQLContext
val sc = new SparkContext(sparkConf).set("spark.some.config.option", "some-value")
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

而Spark2.0中我们使用的就是sparkSQL,是后继的全新产品,解除了对Hive的依赖。

从Spark2.0以上的版本开始,spark是使用全新的SparkSession接口代替Spark1.6中的SQLcontext和HiveContext

来实现对数据的加载、转换、处理等工作,并且实现了SQLcontext和HiveContext的所有功能。

我们在新版本中并不需要之前那么繁琐的创建很多对象,只需要创建一个SparkSession对象即可。

SparkSession支持从不同的数据源加载数据,并把数据转换成DataFrame,并支持把DataFrame转换成SQLContext自身中的表。

然后使用SQL语句来操作数据,也提供了HiveQL以及其他依赖于Hive的功能支持。

创建SparkSession

SparkSession 是 Spark SQL 的入口。

使用 Dataset 或者 Datafram 编写 Spark SQL 应用的时候,第一个要创建的对象就是 SparkSession。

Builder 是 SparkSession 的构造器。 通过 Builder, 可以添加各种配置。

Builder 的方法如下:

方法 说明
getOrCreate 获取或者新建一个 sparkSession
enableHiveSupport 增加支持 hive Support
appName 设置 application 的名字
config 设置各种配置

你可以通过 SparkSession.builder 来创建一个 SparkSession 的实例,并通过 stop 函数来停止 SparkSession。

import org.apache.spark.sql.SparkSession
val spark: SparkSession = SparkSession.builder
.appName("demo") // optional and will be autogenerated if not specified
.master("local[1]") // avoid hardcoding the deployment environment
.enableHiveSupport() // self-explanatory, isn't it?
.config("spark.sql.warehouse.dir", "/user/hive")
.getOrCreate // 停止
spark.stop()

这样我就就可以使用我们创建的SparkSession类型的spark对象了。

设置spark参数

创建SparkSession之后可以通过 spark.conf.set 来设置运行参数

//set new runtime options
spark.conf.set("spark.sql.shuffle.partitions", 6)
spark.conf.set("spark.executor.memory", "2g")
//get all settings
val configMap:Map[String, String] = spark.conf.getAll()//可以使用Scala的迭代器来读取configMap中的数据。

读取元数据

如果需要读取元数据(catalog),可以通过SparkSession来获取。

//fetch metadata data from the catalog
spark.catalog.listDatabases.show(false)
spark.catalog.listTables.show(false)

这里返回的都是Dataset,所以可以根据需要再使用Dataset API来读取。

注意:catalog 和 schema 是两个不同的概念

Catalog是目录的意思,从数据库方向说,相当于就是所有数据库的集合;

Schema是模式的意思, 从数据库方向说, 类似Catelog下的某一个数据库;

创建Dataset和Dataframe

通过SparkSession来创建Dataset和Dataframe有多种方法。

最简单的就是通过range()方法来创建dataset,通过createDataFrame()来创建dataframe。

//create a Dataset using spark.range starting from 5 to 100, with increments of 5
val numDS = spark.range(5, 100, 5)//创建dataset
// reverse the order and display first 5 items
numDS.orderBy(desc("id")).show(5)
//compute descriptive stats and display them
numDs.describe().show()
// create a DataFrame using spark.createDataFrame from a List or Seq
val langPercentDF = spark.createDataFrame(List(("Scala", 35), ("Python", 30), ("R", 15), ("Java", 20)))//创建dataframe
//rename the columns
val lpDF = langPercentDF.withColumnRenamed("_1", "language").withColumnRenamed("_2", "percent")
//order the DataFrame in descending order of percentage
lpDF.orderBy(desc("percent")).show(false)

读取外部数据

可以用SparkSession读取JSON、CSV、TXT和parquet表。

import spark.implicits //使RDD转化为DataFrame以及后续SQL操作
//读取JSON文件,生成DataFrame
val df= spark.read.format("json").json(path)

使用Spark SQL语言

借助SparkSession用户可以像SQLContext一样使用Spark SQL的全部功能。

df.createOrReplaceTempView("tmp")//对上面的dataframe创建一个表
df.cache()//缓存表
val resultsDF = spark.sql("SELECT city, pop, state, zip FROM tmp")//对表调用SQL语句
resultsDF.show(10)//展示结果

存储/读取Hive表 

下面的代码演示了通过SparkSession来创建Hive表并进行查询的方法。

/drop the table if exists to get around existing table error
spark.sql("DROP TABLE IF EXISTS zips_hive_table")
//save as a hive table
spark.table("zips_table").write.saveAsTable("zips_hive_table")
//make a similar query against the hive table
val resultsHiveDF = spark.sql("SELECT city, pop, state, zip FROM zips_hive_table WHERE pop > 40000")
resultsHiveDF.show(10)

sparkSession的类和方法

方法 说明
builder 创建一个sparkSession实例
version 返回当前spark的版本
implicits 引入隐式转化
emptyDataset[T] 创建一个空DataSet
range 创建一个DataSet[Long]
sql 执行sql查询(返回一个dataFrame)
udf 自定义udf(自定义函数)
table 从表中创建DataFrame
catalog 访问结构化查询实体的目录
read 外部文件和存储系统读取DataFrame。
conf 当前运行的configuration
readStream 访问DataStreamReader以读取流数据集。
streams 访问StreamingQueryManager以管理结构化流式传输查询。
newSession 创建新的SparkSession
stop 停止SparkSession
write 访问DataStreamReader以写入流数据集。

参考: https://www.cnblogs.com/zzhangyuhang/p/9039695.html

spark session 深入理解的更多相关文章

  1. 通过案例对 spark streaming 透彻理解三板斧之一: spark streaming 另类实验

    本期内容 : spark streaming另类在线实验 瞬间理解spark streaming本质 一.  我们最开始将从Spark Streaming入手 为何从Spark Streaming切入 ...

  2. ECshop中的session机制理解

    ECshop中的session机制理解     在网上找了发现都是来之一人之手,也没有用自己的话去解释,这里我就抛砖引玉,发表一下自己的意见,还希望能得到各界人士的指导批评! 此session机制不需 ...

  3. php中session的理解

    一.Session是什么 Session一般译作会话,牛津词典对其的解释是进行某活动连续的一段时间.从不同的层面看待session,它有着类似但不完全同样的含义.比方,在web应用的用户看来,他打开浏 ...

  4. 整理对Spark SQL的理解

    Catalyst Catalyst是与Spark解耦的一个独立库,是一个impl-free的运行计划的生成和优化框架. 眼下与Spark Core还是耦合的.对此user邮件组里有人对此提出疑问,见m ...

  5. php session的理解【转】

    目录 1.什么是session? 2.Session常见函数及用法? ● 如何删除session? ● SESSION安全: Session跨页传递问题: 1.什么是session?   Sessio ...

  6. Spark Job-Stage-Task实例理解

    Spark Job-Stage-Task实例理解 基于一个word count的简单例子理解Job.Stage.Task的关系,以及各自产生的方式和对并行.分区等的联系: 相关概念 Job:Job是由 ...

  7. hive on spark:return code 30041 Failed to create Spark client for Spark session原因分析及解决方案探寻

    最近在Hive中使用Spark引擎进行执行时(set hive.execution.engine=spark),经常遇到return code 30041的报错,为了深入探究其原因,阅读了官方issu ...

  8. Failed to create Spark client for Spark session

    最近在hive里将mr换成spark引擎后,执行插入和一些复杂的hql会触发下面的异常: org.apache.hive.service.cli.HiveSQLException: Error whi ...

  9. Spark核心概念理解

    本文主要内容来自于<Hadoop权威指南>英文版中的Spark章节,能够说是个人的翻译版本号,涵盖了基本的Spark概念.假设想获得更好地阅读体验,能够訪问这里. 安装Spark 首先从s ...

随机推荐

  1. NOIp2018集训test-10-20 (bike day6)

    B 君的第一题 lanzhou $x^{\frac{p-1}{2}}\equiv 1(mod\ p)$ $x\equiv x*x^{\frac{p-1}{2}} (mod\ p)$ $x\equiv ...

  2. 使用Nodejs 的http-proxy 模块做代理服务器的尝试

    参考 : https://blog.csdn.net/zhihuoqian9683/article/details/78944482  (亲测可行) http://www.mizuiren.com/4 ...

  3. (转)OpenFire源码学习之二:Mina基础知识

    转:http://blog.csdn.net/huwenfeng_2011/article/details/43413009 Mina概述 Apache MINA(Multipurpose Infra ...

  4. LIBRARY_PATH是编译时候用的,LD_LIBRARY_PATH是程序运行是使用的

    LD_LIBRARY_PATH与LIBRARY_PATH的区别 看起来很像,但是完全是两码事. LIBRARY_PATH is used by gcc before compilation to se ...

  5. 第一章 Linux是什么

    Linux是核心与系统调用接口两层中间的操作系统 不同硬件的功能函数并不相同,IBM的Power CPU与Inter的x86架构不同,所以同一套操作系统是不能在不同的硬件平台上面运行的.也就是说,每种 ...

  6. java-day27

    ## Bootstrap:     1. 概念: 一个前端开发的框架,Bootstrap,来自 Twitter,是目前很受欢迎的前端框架.Bootstrap 是基于 HTML.CSS.JavaScri ...

  7. 2018湘潭大学程序设计竞赛【E】

    题目链接:https://www.nowcoder.com/acm/contest/105/E 题意:给你美食种类和查询次数,告诉你美味度和价格,给你固定钱数,问你最多能吃到多少美味度的食物.(X真是 ...

  8. Spring-Boot使用neo4j-java-driver-- 查找两个节点之间关系的最短路径

    一.Cypher数据 create (小北:朋友圈{姓名:"小北", 喜欢的书类:"Poetry"}), (小菲:朋友圈{姓名:"小菲", ...

  9. usleep - 睡眠若干微秒

    总览 (SYNOPSIS) usleep [number] 描述 (DESCRIPTION) usleep 睡眠 指定的 微秒数. 缺省值 是 1. 选项 (OPTIONS) --usage 显示 简 ...

  10. centos 7 中安装Oracle 12c

    今天有需要在centos 7上安装oracle 12 所以上网查了一下安装流程,原贴转自:https://blog.csdn.net/github_39294367/article/details/7 ...