@description@

给定序列 A,序列中的每一项 Ai 有删除代价 Bi 和附加属性 Ci

请删除若干项,使得 A 的最长上升子序列长度减少至少 1,且付出的代价之和最小,并输出方案。

如果有多种方案,请输出将删去项的附加属性排序之后,字典序最小的一种。

输入格式

输入包含多组数据。

输入的第一行包含整数 T,表示数据组数。

接下来 4T 行描述每组数据:

每组数据的第一行包含一个整数 N,表示 A 的项数,接下来三行,每行 N 个整数 A1, ..., AN; B1, ..., BN; C1, ..., CN。

输出格式

对每组数据,输出两行。

第一行包含两个整数 S,M,依次表示删去项的代价和与数量;

接下来一行 M 个整数,表示删去项在 A 中的位置,按升序输出。

样例

样例输入

1

6

3 4 4 2 2 3

2 1 1 1 1 2

6 5 4 3 2 1

样例输出

4 3

2 3 6

数据范围与提示

对于所有的数据, 1 <= N <= 700, T <= 5, 1 <= Ai, Bi, Ci <= 10^9 且保证 Ci 两两不同。

@solution@

假如不考虑方案,我们可以先跑最长上升子序列的 dp,记录每个点为结尾的最长上升子序列 f[x],并记录全局最优解 mx。

然后考虑建一个分层图,其中 x 向 y 连边当且仅当 dp 时 x 能够作为 y 的最优决策点(即 x < y 且 A[x] < A[y] 且 f[x] + 1 = f[y])。

假如我选择一些点删掉,使得整张图没有点可以从 f[x] = 1 跑到 f[x] = mx,则原序列的最长上升子序列肯定长度减小。

于是我们考虑先将建出来的分层图拆点,然后建源点 s 连 f[x] = 1 的点,将 f[x] = mx 的点连向汇点 t,跑最小割即可得到答案。

现在来考虑怎么求一个字典序最小的最小割方案。不难想到应该使用贪心的方法,按 Ci 从小到大依次取,并尝试将当前这个 i 加入最小割。

怎么判断一条边 i 是否可以在最小割内?最暴力的方法无疑是将这条边删掉,看最大流(即最小割)的变化量是否等于这条边的容量。

等效替代一下,就是看这条边 (u, v) 是否能从 u 出发通过残余网络到达 v。

怎么消掉一条边的影响?最暴力的方法一样是将这条边删掉,然后重跑最大流。

稍微快一些的方法是:跑 (t, v) 的最大流,跑 (u, s) 的最大流,跑最大流时限制总流量 = (u, v) 的流量,并把 (u, v) 这条边的容量与流量都设置为 0。

这个操作称之为退流操作。

然而退流操作要常数小,有时候单路增广甚至要快一些(因为增广路本身不会太长),而多路增广需要重新给 n 个点求距离标号所以会大量访问到无用点。

比较折中方法是在 dinic 求距离标号时一旦遇到终点就立刻返回进行增广。

@accepted code@

#include<cstdio>
#include<vector>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int MAXN = 700;
const int MAXV = 2*MAXN;
const int MAXE = 3*MAXV*MAXV;
const int INF = (1<<30);
struct FlowGraph{
struct edge{
int to, cap, flow;
edge *nxt, *rev;
}edges[MAXE + 5], *adj[MAXV + 5], *cur[MAXV + 5], *ecnt;
int s, t, n;
void clear(int _n) {
n = _n; ecnt = &edges[0];
for(int i=0;i<=n;i++)
adj[i] = NULL;
}
void addedge(int u, int v, int c) {
edge *p = (++ecnt), *q = (++ecnt);
p->to = v, p->cap = c, p->flow = 0;
p->nxt = adj[u], adj[u] = p;
q->to = u, q->cap = 0, q->flow = 0;
q->nxt = adj[v], adj[v] = q;
p->rev = q, q->rev = p;
// printf("%d %d %lld\n", u, v, c);
}
queue<int>que; int d[MAXV + 5];
bool relabel() {
for(int i=0;i<=n;i++)
cur[i] = adj[i], d[i] = n + 5;
while( !que.empty() ) que.pop();
d[t] = 0, que.push(t);
while( !que.empty() ) {
int f = que.front(); que.pop();
for(edge *p=adj[f];p;p=p->nxt)
if( d[f] + 1 < d[p->to] && p->rev->cap > p->rev->flow ) {
d[p->to] = d[f] + 1;
que.push(p->to);
if( p->to == s ) return true;
}
}
return !(d[s] == n + 5);
}
int aug(int x, int tot) {
if( x == t ) return tot;
int sum = 0;
for(edge *&p=cur[x];p;p=p->nxt) {
if( p->cap > p->flow && d[p->to] + 1 == d[x] ) {
int del = aug(p->to, min(p->cap - p->flow, tot - sum));
p->flow += del, p->rev->flow -= del, sum += del;
if( sum == tot ) break;
}
}
return sum;
}
int max_flow(int _s, int _t, int tot) {
s = _s, t = _t; int flow = 0;
while( tot && relabel() ) {
int del = aug(s, tot);
flow += del, tot -= del;
}
return flow;
}
}G;
int A[MAXN + 5], f[MAXN + 5];
FlowGraph::edge *e[MAXN + 5];
pair<int, int>C[MAXN + 5];
int ans[MAXN + 5], cnt;
void solve() {
int N, s, t; scanf("%d", &N);
s = 0, t = 2*N + 1, G.clear(t);
for(int i=1;i<=N;i++)
scanf("%d", &A[i]);
int mx = 0;
for(int i=1;i<=N;i++) {
f[i] = 1;
for(int j=1;j<i;j++)
if( A[j] < A[i] )
f[i] = max(f[i], f[j] + 1);
mx = max(mx, f[i]);
}
for(int i=1;i<=N;i++) {
int x; scanf("%d", &x);
G.addedge(i, i + N, x);
e[i] = G.adj[i];
}
for(int i=1;i<=N;i++) {
if( f[i] == 1 ) G.addedge(s, i, INF);
if( f[i] == mx ) G.addedge(i + N, t, INF);
for(int j=1;j<i;j++)
if( f[j] + 1 == f[i] )
G.addedge(j + N, i, INF);
}
for(int i=1;i<=N;i++)
scanf("%d", &C[i].first), C[i].second = i;
sort(C + 1, C + N + 1);
printf("%d", G.max_flow(s, t, INF));
cnt = 0;
for(int i=1;i<=N;i++) {
int x = C[i].second;
G.s = e[x]->rev->to, G.t = e[x]->to;
if( !G.relabel() ) {
G.max_flow(t, e[x]->to, e[x]->flow), G.max_flow(e[x]->rev->to, s, e[x]->flow);
e[x]->cap = e[x]->flow = e[x]->rev->cap = e[x]->rev->flow = 0;
ans[++cnt] = x;
}
}
sort(ans + 1, ans + cnt + 1);
printf(" %d\n", cnt);
for(int i=1;i<=cnt;i++)
printf("%d%c", ans[i], i == cnt ? '\n' : ' ');
}
int main() {
int T; scanf("%d", &T);
while( T-- ) solve();
}

@details@

woc 为什么我用 long long 就会多 TLE 一个点啊。。。

难道这个数据范围(指 Bi <= 10^9)不应该开 long long 吗。。。

为什么 int 能过啊。。。

@loj - 2196@「SDOI2014」Lis的更多相关文章

  1. LOJ #2196「SDOI2014」LIS

    直接退流复杂度好优越啊 LOJ #2196 题意 一段数列,每个点有点权$ A_i$,删除代价$ B_i$,附加属性$ C_i$ 求最小代价使得$ LIS$长度发生变化,且输出一种$ C_i$字典序最 ...

  2. 「SDOI2014」Lis 解题报告

    「SDOI2014」Lis 题目描述 给定序列 \(A\),序列中的每一项 \(A_i\) 有删除代价 \(B_i\) 和附加属性 \(C_i\). 请删除若干项,使得 \(A\) 的最长上升子序列长 ...

  3. 「SDOI2014」向量集 解题报告

    「SDOI2014」向量集 维护一个向量集合,在线支持以下操作: A x y :加入向量 \((x, y)\): Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \(( ...

  4. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  5. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  6. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  7. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  8. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  9. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

随机推荐

  1. Comparator进行List集合排序

    对数据库中查询到的结果进行排序,一般开发中,实体类是没有实现Comparable接口的,所以不能实现compareTo()方法进行排序, 只能用Comparator去进行排序,只需要在带排序的集合中加 ...

  2. JavaScript 中的多线程通信的方法

    在Html 5诞生之后,我们可以使用javascript来实现多线程处理.H5 新增了一个web workers api,使用这个API,用户可以很容易地创建在后台运行的线程,H5 中被称为workd ...

  3. 【python之路15】深浅拷贝及函数

    一.集合数据类型(set):无序不重复的集合,交集.并集等功能 二.三元运算符 三.深浅拷贝 1)字符串和数字:深浅内存地址都一样 2)其他:浅拷贝:仅复制最外面第一层 深拷贝:除了最内层其他均拷贝 ...

  4. Python3 中 configparser 使用注意事项

    在使用configparser时候应注意: ①配置文件(ini文件)的存放位置:配置文件和调用文件放在同一个文件包下面. 使用read()函数读取并解析配置文件时,直接写配置文件(ini文件)的文件名 ...

  5. Node.js的框架-express

    Node.js的框架 express 是第三方的 express const express=require('express'); const app=express(); const PORT=3 ...

  6. 从0开始学习 GitHub 系列之「03.Git 速成」

    前面的 GitHub 系列文章介绍过,GitHub 是基于 Git 的,所以也就意味着 Git 是基础,如果你不会 Git ,那么接下来你完全继续不下去,所以今天的教程就来说说 Git ,当然关于 G ...

  7. excel怎么制作三维圆环图表

    excel怎么制作三维圆环图表 excel怎么制作三维圆环图表?excel中想要制作一个三维圆环图表,该怎么制作呢?下面我们就来看看详细的教程,很简单,在Excel中,可以通过自带的圆环图功能生成二维 ...

  8. ASP.NET+C#面试题

    1.维护数据库的完整性.一致性.你喜欢用触发器还是自写业务逻辑?为什么? 尽可能用约束(包括CHECK.主键.唯一键.外键.非空字段)实现,这种方式的效率最好:其次用触发器,这种方式可以保证无论何种业 ...

  9. hive-oracle-常用分析函数-窗口函数

    常用的分析函数如下所列: row_number() over(partition by ... order by ...)rank() over(partition by ... order by . ...

  10. Java编程基础23——IO(其他流)&Properties

    1_序列流(了解) 1.什么是序列流 序列流可以把多个字节输入流整合成一个, 从序列流中读取数据时, 将从被整合的第一个流开始读, 读完一个之后继续读第二个, 以此类推. 2.使用方式 整合两个: S ...