作者:Leo-Yang
原文都先发布在作者个人博客:http://www.leoyang.net/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.

前言

图在算法世界中的重要地位是不言而喻的,曾经看到一篇Google的工程师写的一篇《Get that job at Google!》文章中说到面试官问的问题中几乎有一半的问题都可以用图的方法去解决。由此也可以看出图确实适用范围确实很广。

图的表示

闲话不多说,首先要介绍的就是图的表示,图最常用的两种表示方法是邻接表和邻接矩阵。顾名思义,这两种办法分别用表和矩阵的方式描述图中各顶点之间的联系

下图展示了两种表示上面这个图的方法

BFS

本文将着重介绍遍历图的两种最常用的方法,分别为广度优先遍历和深度优先遍历,后面会具体介绍为什么这么命名。首先来看广度优先遍历BFS(Breadth First Search),其主要思想是从起始点开始,将其邻近的所有顶点都加到一个队列(FIFO)中去,然后标记下这些顶点离起始顶点的距离为1.最后将起始顶点标记为已访问,今后就不会再访问。然后再从队列中取出最先进队的顶点A,也取出其周边邻近节点,加入队列末尾,将这些顶点的距离相对A再加1,最后离开这个顶点A。依次下去,直到队列为空为止。从上面描述的过程我们知道每个顶点被访问的次数最多一次(已访问的节点不会再访问),而对于连通图来说,每个顶点都会被访问。加上每个顶点的邻接链表都会被遍历,因此BFS的时间复杂度是Θ(V+E),其中V是顶点个数,E是边数,也就是所有邻接表中的元素个数。为了更好的说明这个过程,下图列出了对一个图的BFS的过程

private static void bfs(HashMap<Character, LinkedList<Character>> graph,HashMap<Character, Integer> dist,char start)
{
Queue<Character> q=new LinkedList<>();
q.add(start);//将s作为起始顶点加入队列
dist.put(start, 0);
int i=0;
while(!q.isEmpty())
{
char top=q.poll();//取出队首元素
i++;
System.out.println("The "+i+"th element:"+top+" Distance from s is:"+dist.get(top));
int d=dist.get(top)+1;//得出其周边还未被访问的节点的距离
for (Character c : graph.get(top)) {
if(!dist.containsKey(c))//如果dist中还没有该元素说明还没有被访问
{
dist.put(c, d);
q.add(c);
}
}
}
}

运行结果:

从运行结果我们也可以看到,w r作为距离为1的顶点先被访问,x t v其后,最后访问y u。上面的代码使用了一个小的trick,用dist这个hash表来记录每个顶点离s的距离,如果dist中没有这个元素则说明还未被访问,这时将距离写入dist中。BFS访问得到的每个节点与起始顶点的距离是起始顶点到达该顶点的最短距离。从感性认识上来说,BFS向外扩散的方式得到的距离就是最短距离。详细的证明过程请参考CLRS上的相应章节

DFS

DFS(Depth First Search)深度优先搜索是从起始顶点开始,递归访问其所有邻近节点,比如A节点是其第一个邻近节点,而B节点又是A的一个邻近节点,则DFS访问A节点后再访问B节点,如果B节点有未访问的邻近节点的话将继续访问其邻近节点,否则继续访问A的未访问邻近节点,当所有从A节点出去的路径都访问完之后,继续递归访问除A以外未被访问的邻近节点。因为是递归过程,所以我们用过程图看一下也许会更直观一些。

如下是DFS的代码及运行结果

private static void dfs(HashMap<Character , LinkedList<Character>> graph,HashMap<Character, Boolean> visited)
{
visit(graph, visited, 'u');//为了和图中的顺序一样,我认为控制了DFS先访问u节点
visit(graph,visited,'w');
}
private static void visit(HashMap<Character , LinkedList<Character>> graph,HashMap<Character, Boolean> visited,char start)
{
if(!visited.containsKey(start))
{
count++;
System.out.println("The time into element "+start+":"+count);//记录进入该节点的时间
visited.put(start, true);
for (char c : graph.get(start))
{
if(!visited.containsKey(c))
{
visit(graph,visited,c);//递归访问其邻近节点
}
}
count++;
System.out.println("The time out element "+start+":"+count);//记录离开该节点的时间
}
}

运行结果:

我们通过一个全局变量count记录了进入每个节点和离开每个节点的时间,我们也可以看到进出元素的时间和过程图中的访问过程是一样的。

总结

总的来说,BFS多用于寻找最短路径的问题,DFS多用于快速发现底部节点。以后若有时间再贴几道相关的题目上来。

作者:Leo-Yang
原文都先发布在作者个人博客:http://www.leoyang.net/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利

BFS和DFS详解以及java实现(转载)的更多相关文章

  1. BFS和DFS详解以及java实现

    前言 图在算法世界中的重要地位是不言而喻的,曾经看到一篇Google的工程师写的一篇<Get that job at Google!>文章中说到面试官问的问题中几乎有一半的问题都可以用图的 ...

  2. BFS和DFS详解

    BFS和DFS详解以及java实现 前言 图在算法世界中的重要地位是不言而喻的,曾经看到一篇Google的工程师写的一篇<Get that job at Google!>文章中说到面试官问 ...

  3. 事件驱动模型实例详解(Java篇)

    或许每个软件从业者都有从学习控制台应用程序到学习可视化编程的转变过程,控制台应用程序的优点在于可以方便的练习某个语言的语法和开发习惯(如.net和java),而可视化编程的学习又可以非常方便开发出各类 ...

  4. Myeclipse Templates详解(一) —— Java模板基础

    目录 Templates简介 MyEclipse自带Templates详解 新建Template 自定义Template 因为自己比较懒,尤其是对敲重复代码比较厌恶,所以经常喜欢用快捷键和模板,Mye ...

  5. Heapsort 堆排序算法详解(Java实现)

    Heapsort (堆排序)是最经典的排序算法之一,在google或者百度中搜一下可以搜到很多非常详细的解析.同样好的排序算法还有quicksort(快速排序)和merge sort(归并排序),选择 ...

  6. 二叉搜索树详解(Java实现)

    1.二叉搜索树定义 二叉搜索树,是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值: 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根 ...

  7. Java AtomicInteger类的使用方法详解_java - JAVA

    文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 首先看两段代码,一段是Integer的,一段是AtomicInteger的,为以下: public class Samp ...

  8. java 流操作对文件的分割和合并的实例详解_java - JAVA

    文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 java 流操作对文件的分割和合并的实例详解 学习文件的输入输出流,自己做一个小的示例,对文件进行分割和合并. 下面是代 ...

  9. springboot扫描自定义的servlet和filter代码详解_java - JAVA

    文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 这几天使用spring boot编写公司一个应用,在编写了一个filter,用于指定编码的filter,如下: /** ...

随机推荐

  1. 1054 The Dominant Color

    大致题意就是给出N行M列的元素,找出出现次数最多的元素并输出. #include<iostream> #include<unordered_map> using namespa ...

  2. 金蝶云星空使用WebAPI来新增单据

    有很多客户需求在后台自动生成某张单据,金蝶云星空提供了WebApi,包含了保存,提交,审核,删除单据的接口,下面以生产订单的保存,提交,审核为例,说明一下应用WebApi后台自动生成生产订单的功能,下 ...

  3. mysql 低版本导入表中包含两个TIMESTAMP报错问题

    错误代码: 1293  Incorrect table definition; there can be only one TIMESTAMP column with CURRENT_TIMESTAM ...

  4. GIT如何根据历史记录回退代码

    ps: 因为使用这种方式回退后,回退的目标版本之后提交的代码都没了,所以建议先把当前代码打个tag 首先找到分支的提交记录 git log 将代码回退到历史版本 git reset --hard 0f ...

  5. Jenkins - 基于 Docker 的 Jenkins 安装

    概述 安装 Jenkins 基于 Docker 这个有点 水一发 的性质... 场景 学习 Jenkins 第一步, 当然是安装 但是 安装的方法 很多 Jenkins 是基于 Java 的 所以是个 ...

  6. 【游戏体验】FlyGuy(小飞人)

    关于FlyGuy这款游戏:https://en.wikipedia.org/wiki/Fly_Guy_(video_game) 这款游戏可以说是古董了 游戏的自由度比较高,玩法简单. 个人测评 游戏性 ...

  7. GO111MODULE

    GO111MODULE的功能: //为了解决项目不用放在go的src目录下,src应该放一些官方的包,而不应该放项目 //模块是相关Go包的集合.modules是源代码交换和版本控制的单元. go命令 ...

  8. nmon+python 基于AIX系统数据分析

    https://sourceforge.net/projects/pynmongraph/ github :https://github.com/madmaze/pyNmonAnalyzer nmon ...

  9. hdu1695(莫比乌斯反演+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目是求 在区间[a,b]选一个数x,区间[c,d]选一个数y,求满足gcd(x,y) = k ...

  10. leetcode78.子集➕90.子集2

    78子集 dfs dfs1: 和全排列的区别就是对于当前考察的索引i,全排列如果不取i,之后还要取i,所以需要一个visited数组用来记录.对于子集问题如果不取i,之后也不必再取i. 单纯递归回溯 ...