river-jdbc

安装

./bin/plugin --install jdbc --url http://xbib.org/repository/org/xbib/elasticsearch/plugin/elasticsearch-river-jdbc/1.4.0.8/elasticsearch-river-jdbc-1.4.0.8-plugin.zip

文档

两种方式:river或者feeder

该插件能够以“pull模式”执行river和以“push模式”执行feeder。在feeder模式下插件运行在不同的JVM中,可以连接到远程的Elasticsearch集群。

该插件可以从不同的关系数据库源并行的获取数据。当索引到elasticsearch中时,多线程bulk模式确保了高吞吐。

安装运行river

#安装elasticsearch
curl -OL https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-1.4.2.zip cd $ES_HOME
unzip path/to/elasticsearch-1.4.2.zip #安装JDBC插件
./bin/plugin --install jdbc --url http://xbib.org/repository/org/xbib/elasticsearch/plugin/elasticsearch-river-jdbc/1.4.0.6/elasticsearch-river-jdbc-1.4.0.6-plugin.zip #下载mysql driver
curl -o mysql-connector-java-5.1.33.zip -L 'http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.33.zip/from/http://cdn.mysql.com/'
cp mysql-connector-java-5.1.33-bin.jar $ES_HOME/plugins/jdbc/ chmod 644 $ES_HOME/plugins/jdbc/* #启动elasticsearch
./bin/elasticsearch #停止river
curl -XDELETE 'localhost:9200/_river/my_jdbc_river/'

JDBC插件参数

JDBC插件一般的格式如下:

curl -XPUT 'localhost:9200/_river/<rivername>/_meta' -d '{
<river parameters>
"type" : "jdbc",
"jdbc" : {
<river definition>
}
}'

例如

curl -XPUT 'localhost:9200/_river/my_jdbc_river/_meta' -d '{
"type" : "jdbc",
"jdbc" : {
"url" : "jdbc:mysql://localhost:3306/test",
"user" : "",
"password" : "",
"sql" : "select * from orders",
"index" : "myindex",
"type" : "mytype",
...
}
}'

如果一个数组传递给jdbc字段,多个river源也是可以的。

curl -XPUT 'localhost:9200/_river/my_jdbc_river/_meta' -d '{
<river parameters>
"type" : "jdbc",
"jdbc" : [ {
<river definition 1>
}, {
<river definition 2>
} ]
}'

可以通过concurrency参数并行控制多个river源

curl -XPUT 'localhost:9200/_river/my_jdbc_river/_meta' -d '{
<river parameters>
"concurrency" : 2,
"type" : "jdbc",
"jdbc" : [ {
<river definition 1>
}, {
<river definition 2>
} ]
}'

jdbc块外部的参数

strategy - JDBC插件的策略。当前的实现有simplecolumn

schedule - a single or a list of cron expressions for scheduled execution

threadpoolsize -scheduled executions的线程池大小

interval - 两个river启动的延迟时间

max_bulk_actions - 每个bulk索引请求提交的长度(默认是1000)

max_concurrrent_bulk_requests - bulk请求的并行数量(默认是2*cpu core)

max_bulk_volume - 一个bulk请求的最大容量(默认是10m)

max_request_wait - 一个bulk请求最大的等待时间(默认是60s)

flush_interval - flushing索引文档到bulk action的间隔时间

jdbc块内部的参数

url - the JDBC driver URL

user - the JDBC database user

password - the JDBC database password

sql - SQL语句。既可以是一个字符串也可以是一个列表。

"sql" : [
{
"statement" : "select ... from ... where a = ?, b = ?, c = ?",
"parameter" : [ "value for a", "value for b", "value for c" ]
},
{
"statement" : "insert into ... where a = ?, b = ?, c = ?",
"parameter" : [ "value for a", "value for b", "value for c" ],
"write" : "true"
},
{
"statement" : ...
}
]

sql.statement - the SQL statement

sql.write - 如果为true,SQL语句解释为一个insert/update语句,这个语句写权限。默认为false

sql.callable - 如果为true,SQL语句解释为一个CallableStatement用于保存存储过程。默认为false

sql.parameter - 绑定参数到SQL语句。可以用到一些指定的值

  • $now - the current timestamp
  • $job - a job counter
  • $count - last number of rows merged
  • $river.name - the river name
  • $last.sql.start - a timestamp value for the time when the last SQL statement started
  • $last.sql.end - a timestamp value for the time when the last SQL statement ended
  • $last.sql.sequence.start - a timestamp value for the time when the last SQL sequence started
  • $last.sql.sequence.end - a timestamp value for the time when the last SQL sequence ended
  • $river.state.started - the timestamp of river start (from river state)
  • $river.state.timestamp - last timestamp of river activity (from river state)
  • $river.state.counter - counter from river state, counts the numbers of runs

locale - the default locale (used for parsing numerical values, floating point character. Recommended values is "en_US")

timezone - the timezone for JDBC setTimestamp() calls when binding parameters with timestamp values

rounding - rounding mode for parsing numeric values. Possible values "ceiling", "down", "floor", "halfdown", "halfeven", "halfup", "unnecessary", "up"

scale - the precision of parsing numeric values

autocommit - true if each statement should be automatically executed. Default is false

fetchsize - the fetchsize for large result sets, most drivers use this to control the amount of rows in the buffer while iterating through the result set

max_rows - limit the number of rows fetches by a statement, the rest of the rows is ignored

max_retries - the number of retries to (re)connect to a database

max_retries_wait - a time value for the time that should be waited between retries. Default is "30s"

resultset_type - the JDBC result set type, can be TYPE_FORWARD_ONLY, TYPE_SCROLL_SENSITIVE, TYPE_SCROLL_INSENSITIVE. Default is TYPE_FORWARD_ONLY

resultset_concurrency - the JDBC result set concurrency, can be CONCUR_READ_ONLY, CONCUR_UPDATABLE. Default is CONCUR_UPDATABLE

ignore_null_values - if NULL values should be ignored when constructing JSON documents. Default is false

prepare_database_metadata - if the driver metadata should be prepared as parameters for acccess by the river. Default is false

prepare_resultset_metadata - if the result set metadata should be prepared as parameters for acccess by the river. Default is false

column_name_map - a map of aliases that should be used as a replacement for column names of the database. Useful for Oracle 30 char column name limit. Default is null

query_timeout - a second value for how long an SQL statement is allowed to be executed before it is considered as lost. Default is 1800

connection_properties - a map for the connection properties for driver connection creation. Default is null

index - the Elasticsearch index used for indexing

type - the Elasticsearch type of the index used for indexing

index_settings - optional settings for the Elasticsearch index

type_mapping - optional mapping for the Elasticsearch index type

默认的参数设置

{
"strategy" : "simple",
"schedule" : null,
"interval" : 0L,
"threadpoolsize" : 4,
"max_bulk_actions" : 10000,
"max_concurrent_bulk_requests" : 2 * available CPU cores,
"max_bulk_volume" : "10m",
"max_request_wait" : "60s",
"flush_interval" : "5s",
"jdbc" : {
"url" : null,
"user" : null,
"password" : null,
"sql" : null,
"locale" : Locale.getDefault().toLanguageTag(),
"timezone" : TimeZone.getDefault(),
"rounding" : null,
"scale" : 2,
"autocommit" : false,
"fetchsize" : 10, /* MySQL: Integer.MIN */
"max_rows" : 0,
"max_retries" : 3,
"max_retries_wait" : "30s",
"resultset_type" : "TYPE_FORWARD_ONLY",
"resultset_concurreny" : "CONCUR_UPDATABLE",
"ignore_null_values" : false,
"prepare_database_metadata" : false,
"prepare_resultset_metadata" : false,
"column_name_map" : null,
"query_timeout" : 1800,
"connection_properties" : null,
"index" : "jdbc",
"type" : "jdbc",
"index_settings" : null,
"type_mapping" : null,
}
}

结构化对象

SQL查询的一个优势是连接操作。从许多表获得数据形成新的元组。

curl -XPUT 'localhost:9200/_river/my_jdbc_river/_meta' -d '{
"type" : "jdbc",
"jdbc" : {
"url" : "jdbc:mysql://localhost:3306/test",
"user" : "",
"password" : "",
"sql" : "select \"relations\" as \"_index\", orders.customer as \"_id\", orders.customer as \"contact.customer\", employees.name as \"contact.employee\" from orders left join employees on employees.department = orders.department"
}
}'

sql结构是

mysql> select "relations" as "_index", orders.customer as "_id", orders.customer as "contact.customer", employees.name as "contact.employee"  from orders left join employees on employees.department = orders.department;
+-----------+-------+------------------+------------------+
| _index | _id | contact.customer | contact.employee |
+-----------+-------+------------------+------------------+
| relations | Big | Big | Smith |
| relations | Large | Large | Müller |
| relations | Large | Large | Meier |
| relations | Large | Large | Schulze |
| relations | Huge | Huge | Müller |
| relations | Huge | Huge | Meier |
| relations | Huge | Huge | Schulze |
| relations | Good | Good | Müller |
| relations | Good | Good | Meier |
| relations | Good | Good | Schulze |
| relations | Bad | Bad | Jones |
+-----------+-------+------------------+------------------+
11 rows in set (0.00 sec)

得到的JSON对象为

index=relations id=Big {"contact":{"employee":"Smith","customer":"Big"}}
index=relations id=Large {"contact":{"employee":["Müller","Meier","Schulze"],"customer":"Large"}}
index=relations id=Huge {"contact":{"employee":["Müller","Meier","Schulze"],"customer":"Huge"}}
index=relations id=Good {"contact":{"employee":["Müller","Meier","Schulze"],"customer":"Good"}}
index=relations id=Bad {"contact":{"employee":"Jones","customer":"Bad"}}

怎样获取一个表

它dump一个表到Elasticsearch中。如果没有给定_id列,IDs将会自动生成。

curl -XPUT 'localhost:9200/_river/my_jdbc_river/_meta' -d '{
"type" : "jdbc",
"jdbc" : {
"url" : "jdbc:mysql://localhost:3306/test",
"user" : "",
"password" : "",
"sql" : "select * from orders"
}
}'

结果是:

id=<random> {"product":"Apples","created":null,"department":"American Fruits","quantity":1,"customer":"Big"}
id=<random> {"product":"Bananas","created":null,"department":"German Fruits","quantity":1,"customer":"Large"}
id=<random> {"product":"Oranges","created":null,"department":"German Fruits","quantity":2,"customer":"Huge"}
id=<random> {"product":"Apples","created":1338501600000,"department":"German Fruits","quantity":2,"customer":"Good"}
id=<random> {"product":"Oranges","created":1338501600000,"department":"English Fruits","quantity":3,"customer":"Bad"}

怎样获得增量的数据

推荐使用时间戳来同步。下面的例子获取最后一次river运行之后添加的所有产品行。

{
"type" : "jdbc",
"jdbc" : {
"url" : "jdbc:mysql://localhost:3306/test",
"user" : "",
"password" : "",
"sql" : [
{
"statement" : "select * from \"products\" where \"mytimestamp\" > ?",
"parameter" : [ "$river.state.last_active_begin" ]
}
],
"index" : "my_jdbc_river_index",
"type" : "my_jdbc_river_type"
}
}

elasticsearch 中文API river的更多相关文章

  1. elasticsearch 中文API facets(⑩)

    facets Elasticsearch提供完整的java API用来支持facets.在查询的过程中,将需要计数的facets添加到FacetBuilders中.然后将该FacetBuilders条 ...

  2. elasticsearch 中文API 基于查询的删除(九)

    基于查询的删除API 基于查询的删除API允许开发者基于查询删除一个或者多个索引.一个或者多个类型.下面是一个例子. import static org.elasticsearch.index.que ...

  3. elasticsearch 中文API 记数(八)

    计数API 计数API允许开发者简单的执行一个查询,返回和查询条件相匹配的文档的总数.它可以跨多个索引以及跨多个类型执行. import static org.elasticsearch.index. ...

  4. elasticsearch 中文API bulk(六)

    bulk API bulk API允许开发者在一个请求中索引和删除多个文档.下面是使用实例. import static org.elasticsearch.common.xcontent.XCont ...

  5. elasticsearch 中文API 索引(三)

    索引API 索引API允许开发者索引类型化的JSON文档到一个特定的索引,使其可以被搜索. 生成JSON文档 有几种不同的方式生成JSON文档 利用byte[]或者作为一个String手动生成 利用一 ...

  6. elasticsearch 中文API(一)

    Java API 这节会介绍elasticsearch支持的Java API.所有的elasticsearch操作都使用Client对象执行.本质上,所有的操作都是并行执行的. 另外,Client中的 ...

  7. elasticsearch 中文API 更新(五)

    更新API 你能够创建一个UpdateRequest,然后将其发送给client. UpdateRequest updateRequest = new UpdateRequest(); updateR ...

  8. elasticsearch 中文API 删除(四)

    删除API 删除api允许你通过id,从特定的索引中删除类型化的JSON文档.如下例: DeleteResponse response = client.prepareDelete("twi ...

  9. elasticsearch 中文API 获得(三)

    获取API 获取API允许你通过id从索引中获取类型化的JSON文档,如下例: GetResponse response = client.prepareGet("twitter" ...

随机推荐

  1. 【笔记篇】不普及向——莫比乌斯反演学习笔记 && 栗题HAOI2011 Problem B

    Part0 广告(当然没有广告费) P.S. 这篇文章是边学着边用Typora写的...学完了题A了blog也就呼之欲出了~有latex化式子也非常方便...非常建议喜欢Markdown的dalao们 ...

  2. Makefile 从入门到放弃

    //如有侵权 请联系我进行删除 email:YZFHKM@163.com { 什么是makefile?或许很多Winodws的程序员都不知道这个东西,因为那些Windows的IDE都为你做了这个工作, ...

  3. Spring Cloud失散多年的哥哥Dubbo学习笔记

    Spring Cloud失散多年的哥哥Dubbo 随着互联网项目用户量的急剧增长,访问并发良突然暴增,将一个应用使用多个独立的工程共同实现的系统架构,称为SOA系统架构,各个工程可以允许在不同的机器上 ...

  4. for in循环介绍以及陷阱

    大家都知道在JavaScript中提供了两种方式迭代对象: (1)for 循环: (2)for..in循环: 使用for循环进行迭代数组对象,想必大家都已经司空见惯了.但是,使用for.. in循环时 ...

  5. kubernetes 强制删除istio-system空间,强制删除pod

    加上这个选项 --grace-period=0 --force--grace-period=0 --force 先删除deployment,pod,svc再删除namespace > kubec ...

  6. docker-compose安装及docker-compose.yml详解

    1.下载安装 [root@cx-- ~]# curl -L https://github.com/docker/compose/releases/download/1.24.1/docker-comp ...

  7. (转)HttpURLConnection中设置网络超时

    转:http://www.xd-tech.com.cn/blog/article.asp?id=37 Java中可以使用HttpURLConnection来请求WEB资源.HttpURLConnect ...

  8. maven项目引入外部第三方jar包,引入、本地编译、第三方jar一起打到jar中、在linux机器中解决classnotfound(配置classpath),笔记整理。

    文章目录 引用的第三方jar的目录结构(示例) 引入第三方jar进行dependency使项目内能import 本地编译 第三方jar一起打到jar中 在linux机器中解决classnotfound ...

  9. AtCoder ABC 130E Common Subsequence

    题目链接:https://atcoder.jp/contests/abc130/tasks/abc130_e 题目大意 给定一个长度为 N 的序列 S 和一个长度为 M 的序列 T,问 S 和 T 中 ...

  10. 1day:了解python

    一.’计算机语言有哪些? 1.开发语言: 高级语言:Python,Java,PHP,C#,C++,(面向字节码) 低级语言:C.汇编(面向机器码) 备注:机器码是直接和计算机硬件沟通,字节码是通过解释 ...