呵呵,我暴力WA

这个题充分考验了大家对数学的理解(麦蒙大多在胡诌)

但是确实如此啊。

看数据范围想状压。(我额嗯嗯想到暴力?)

然后设出一个可爱的$dp$式(主语当然不是我,是出题人大佬)

$f_s$表示二进制组昂态(状态)为$s$时的期望。

那么我们可以从$s'$转移过来,其中$s'  or\   s = s$或$s'   and\   s =s$($and$和$or$均为位运算)(内两个式子是等效的)

那么有:

$f_s= \sum\limits_{i=1}^N p_i \times f_{s'}+(1-\sum \limits_{i=1}^N p_i) \times f_s +1$

真是恐怖,$f_s$转移需要自己~

但是表慌,数学老师可以拯救你,哒哒哒

移项。式子变为:

$\begin{array}{lcl}0 & = & \sum \limits_{i=1}^N p_i \times f_{s'}-f_s \times \sum \limits_{i=1}^N p_i +1\\f_s & = & \frac{\sum \limits_{i=1}^N p_i \times f_{s'}+1}{\sum \limits_{i=1}^N p_i}\end{array}$

还是比较简单的。

 #include <iostream>
#include <cstdio>
#include <cstring> //#include "debug.h" #define N 22
using namespace std;
int n;
double p[N];
long long val,dat;
double dp[(<<)+];
int main(){
scanf("%d",&n);
for (int i=;i<=n;i++){
scanf("%lf%lld",&p[i],&dat);
val=val+dat;
}
cout<<val<<endl;
double ons=,sums=;
for (int s=;s<<<n;s++){
ons=sums=;
for (int i=;i<=n;i++){
if (s&(<<(i-))){
ons+=dp[s^(<<(i-))]*p[i];//cout<<bin(s,n)<<"<<"<<bin(s^(1<<(i-1)),n)<<endl;
sums+=p[i];//cout<<sums<<endl;
}
}//cout<<"O:"<<ons<<" S:"<<sums<<endl;
if(sums==){
// cout<<"T0T"<<NL;
continue;
}
dp[s]=(ons+1.0)/sums;
}
// pour(dp,1,1<<n,10,"Dp");
printf("%.3lf\n",dp[(<<n)-]);
return ;
}

20190716-T1-礼物的更多相关文章

  1. 模拟4题解 T1礼物

    T1 题目描述 夏川的生日就要到了.作为夏川形式上的男朋友,季堂打算给夏川买一些生 日礼物. 商店里一共有种礼物.夏川每得到一种礼物,就会获得相应喜悦值Wi(每种 礼物的喜悦值不能重复获得). 每次, ...

  2. 20190716NOIP模拟赛T1 礼物(概率dp+状压)

    题目描述 夏川的生日就要到了.作为夏川形式上的男朋友,季堂打算给夏川买一些生 日礼物. 商店里一共有种礼物.夏川每得到一种礼物,就会获得相应喜悦值Wi(每种 礼物的喜悦值不能重复获得). 每次,店员会 ...

  3. 7.16 NOIP模拟测试4 礼物+通讯+奇袭

    T1 礼物 题目大意:n个物品,每次有pi的概率买到,可以重复买,也可以什么都没买到,但算一次购买,问把所有东西都买到的期望次数.对于10%的数据,N = 1;对于30%的数据,N ≤ 5;对于100 ...

  4. SNOI2017(BZOJ5015~5018)泛做

    T1:礼物 想错方向了,实际上很简单. 我想的是:显然题目求的是$\sum_{i=1}^{n} i^{k}2^{i}$,然后或许可以通过化式子变成与n无关的复杂度? 然后就不停往斯特林数反演和下降幂的 ...

  5. NOIP模拟测试2-5

    该补一下以前挖的坑了 先总结一下 第二次 T1 搜索+剪枝 #include<cstdio> #include<iostream> #define ll long long u ...

  6. 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物

    T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...

  7. 「题解」:07.16NOIP模拟T1:礼物

    问题 A: 礼物 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 夏川的生日就要到了.作为夏川形式上的男朋友,季堂打算给夏川买一些生 日礼物. 商店里一共有种礼物.夏川每得到一种礼 ...

  8. bzoj 3920: Yuuna的礼物

    Description 转眼就要到Karin的生日了!Yuuna她们想为她准备生日礼物!现在有许多礼物被排列成了一个一维序列,每个礼物都有一个价值.Yuuna对这个序列十分感兴趣.因此,你需要多次回答 ...

  9. 【BZOJ4827】【HNOI2017】礼物(FFT)

    [BZOJ4827][HNOI2017]礼物(FFT) 题面 Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每 ...

  10. BZOJ 2142 礼物 组合数学 CRT 中国剩余定理

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1450  Solved: 593[Submit][Status][Discuss] ...

随机推荐

  1. linux /bin/find 报错:paths must precede expression 及find应用

    1.问题描述,运行下面的命令,清楚日志 [resin@xx ~]$ ssh xxx  "/usr/bin/find /data/logs/`dirname st_qu/stdout.log` ...

  2. Leetcode187. Repeated DNA Sequences重复的DNA序列

    所有 DNA 由一系列缩写为 A,C,G 和 T 的核苷酸组成,例如:"ACGAATTCCG".在研究 DNA 时,识别 DNA 中的重复序列有时会对研究非常有帮助. 编写一个函数 ...

  3. C++:多线程002

    https://blog.csdn.net/morewindows/article/details/7442333 程序描述:主线程启动10个子线程并将表示子线程序号的变量地址作为参数传递给子线程.子 ...

  4. Java系列笔记(4) - JVM监控与调优【转】

    Java系列笔记(4) - JVM监控与调优[转]   目录 参数设置收集器搭配启动内存分配监控工具和方法调优方法调优实例     光说不练假把式,学习Java GC机制的目的是为了实用,也就是为了在 ...

  5. ubuntu下apache服务器操作方法小结,具有参考借鉴价值

    这篇文章主要介绍了ubuntu下apache服务器操作方法小结,非常不错,具有参考借鉴价值,需要的朋友可以参考下(http://www.0831jl.com)Linux系统为Ubuntu 一.Star ...

  6. 第九章 Odoo 12开发之外部 API - 集成第三方系统

    Odoo 服务器端带有外部 API,可供网页客户端和其它客户端应用使用.本文中我们将学习如何在我们的客户端程序中使用 Odoo 的外部 API.为避免引入大家所不熟悉的编程语言,此处我们将使用基于 P ...

  7. kafka数据分区的四种策略

    kafka的数据的分区 探究的是kafka的数据生产出来之后究竟落到了哪一个分区里面去了 第一种分区策略:给定了分区号,直接将数据发送到指定的分区里面去 第二种分区策略:没有给定分区号,给定数据的ke ...

  8. css---switch开关

    html: <label><input class="mui-switch" type="checkbox"> 默认未选中</la ...

  9. ArcMap10.2 中制作符号库

    今天在发布地图服务时,发现地图中的3D符号没法用,出现”00013“错误,如下:

  10. CentOS 编译golang

    CentOS 安装Mercurial http://hi.baidu.com/lang2858/item/cda8f6026cd522e0f45ba67f 获取代码 $ hg clone -u rel ...