时序数据库 Apache-IoTDB 源码解析之系统架构(二)
上一章聊到时序数据是什么样,物联网行业中的时序数据的特点:存量数据大、新增数据多(采集频率高、设备量多)。详情请见:
打一波广告,欢迎大家访问 IoTDB 仓库,求一波 Star 。
这一章主要想聊一聊:
- 物联网行业的基本系统架构,及使用数据库遇到的需求与挑战
IoTDB
的功能特点及系统架构
车联网
因为本人是在做车联网行业,所以对这个行业的信息了解更深入一些,能够拿到一些更具体的数字来说明这个行业的具体情况。在上一篇文中的数据是出于自己的理解,为了让大家容易明白而编造的数据,但实际情况要复杂的多。
1. 系统架构
1.1 系统简介
以上示意图可能非常简单,但我觉得足够表明一个整体架构。 当一台设备、一辆车连接到协议网关后,便开始了真正的收发数据。一般通信的方式都是基于 tcp
,搞一段二进制协议,所以协议网关基本要做的工作就是完成对连接的管理、完成对数据的收发及编解码。
当数据完成编解码之后一般会发往消息队列当中,一般都是 Kafka
之中。用来解耦生产和消费两端,提供一层缓冲,无论消费服务是死是活还是速度慢,包治百病,甚至还能治未病。
数据发往消息队列的过程中,或之后花活儿就多起来了。但主要的我认为无非还是三种处理方式:
- 需要将原始数据保存入库,这里的原始数据包含二进制数据和解码后的二进制数据。
- 流处理或批处理数据,在数据落到硬盘之前将能够提前计算的数据全部预先计算出来,这样做的好处是将来查询的时候如果和预计算的模型匹配,那就能非常快的得到结果。
- 离线处理,这里的应用就太广泛了,一般来讲都是将耗时比较大的放置离线计算来做。但是这里要声明一点,离线计算依然是越快越好,不能因为他叫离线计算所以在设计或开发阶段就不关注时效。
1.2 数据质量
上一章提到了基本的数据质量,但实际工作中,往往质量会出现各种意想不到的数据,下面是工程中影响数据质量的几个比较大的问题:
- 数据丢失,不管是在采集,上报,数据流转环节,都可能会带来一定的数据丢失比例。
- 数据乱序,数据在打包、上报、流转等环节均可能出现乱序,尤其是在补传数据中。
- 数据重复,数据重复发送,尤其是在网络不好时。
- 数据本身不准确,这个最突出的地方就是在 GPS 数据中,经常出现飘点、噪点等等。
2. 数据库的挑战
2.1 数据项多
汽车里具有非常复杂的电路系统和传感器设备,我印象当中的粗略估算应该是有 120 项左右,并且这些数据项并不是车内数据的全部。随着自动驾驶的到来,汽车的传感器会越来越多,数据项就会更多。
如果按照传统的 Mysql 存储,那么由于行式存储,所以在取回数据时候就会非常影响效率,之后介绍到 IoTDB 的文件格式的时候再聊。
2.2 存量数据大
我们按照宝马汽车 2019 销售量估计,252 万量,我们假定 4 年前就已经具备了联网模块那就是 1000 万量汽车。按照每条数据 1K,每天采样上传 1 次,应该是 每天 9G 数据。但因为车不可能一直都点火开,所以要假设一个 30% 的在线率,那就是 3G 数据。
3 年大约就会存储 3TB 数据,可能你觉得 3T 数据对于时下最热的大数据来讲并不是一个非常庞大的数字,但如果整个数据里面不包含任何图片、音视频甚至都没有文字,全部是由整数、浮点数堆积起来的,那你可以试想一下这个数据库里面到底有多少数据,如果你一个不小心执行了 count(*)
你觉得会卡死不?
2.3 采集频率高
汽车不同于其他传感器的地方是,他是一个处在时刻运动当中的物体,如果需要做一些高阶的计算模型,比如说:碰撞检测、行驶轨迹纠偏等,那么相应的数据采集频率有可能要达到秒级。
当然我说完这句话,可能你感触并不是很深,但是结合前面说到的两点:120项数据、1000万量车,将采集频率提高到 1 秒一采集,那么这个频率下,一天产生的数据大小就是 259T。这时候你找 DBA 说,哥们我们的需求要 1 天写入 259T 数据,我觉得反正我是没脸找人家,让产品去跟 DBA 聊吧。
2.4 大数据分析需求
现有时序数据库都无法支持大数据分析框架,都需要通过数据库的 Api 把数据从数据库往数据仓库导出后再存一份,数据量直接翻倍。 举个例子,我如果需要对 Mysql 中的数据进行 MapReduce 计算,那么只能是将数据通过 JDBC 接口导出到 Hbase 或 Hdfs 上,然后执行计算,可能你觉得这很正常,但按照上面提到的数据量,数据复制之后你公司里可能就需要每天支撑 500T 数据。
2.4 不同数据库遇到的问题
我们公司也采用了多种尝试,从开始的 MySql 到 MongoDB 再到 Hbase 等等,它们总存在这一点或多点的让你觉得就是不满足的地方,如下图:
IoTDB
到此为止,整体需求基本明确,作为一款物联网的时序数据库需要处理的问题:
- 高速写入
- 高效压缩
- 多维度查询,降采样、时序分割查询等
- 查询低延迟高效
- 提高数据质量,乱序、空值等
- 对接现有大数据生态
IoTDB 功能特点
IoTDB 完成了上述问题中的几乎所有功能,而且可以灵活对接多生态,高性能优势等。那么 IoTDB 是如何完成这些优势项,如何做到?
IoTDB 架构描述
对照上面的图,大致了解一下 IoTDB 的结构,逻辑上被分为 3 个大部分,其中:
- Engine 是完整的数据库进程,负责 sql 语句的解析,数据写入、查询、元数据管理等功能。
- Storage 是底层存储结构,类似于Mysql 的 idb 文件
- Analyzing Layer 是各种连接器,暂不涉及细节。
Engine 和 Storage 中主要包含:
- IoTDB Engine,也就是代码中的
Server
模块. - Native API,他是高效写入的基石,代码中的
Session
模块 - JDBC,传统的 JDBC 连接调用方式,代码中的
JDBC
模块 - TsFile,这是整个数据库的一个特色所在,传统的数据库如果使用 Spark 做离线分析,或者 ETL 都需要通过数据库进程对外读取,而 IoTDB 可以直接迁移文件,省去了来回转换类型的开销。TsFile 提供了两种读写模式,一种基于 HDFS,一种基于本地文件。
聊到这里,我们基本介绍了行业内的特点,作为数据库需要解决的痛点,以及 IoTDB 在完成功能的同时所具有的自身的优势。同时还简单介绍了 IoTDB 的基础架构,朴实无华且枯燥。那么 TsFile 究竟是什么样的结构才能完成以上所介绍的高速写入、高压缩比、高速查询呢?Native API 又是什么?欢迎继续关注。。。
时序数据库 Apache-IoTDB 源码解析之系统架构(二)的更多相关文章
- Ocelot简易教程(七)之配置文件数据库存储插件源码解析
作者:依乐祝 原文地址:https://www.cnblogs.com/yilezhu/p/9852711.html 上篇文章给大家分享了如何集成我写的一个Ocelot扩展插件把Ocelot的配置存储 ...
- Spring源码解析之ConfigurationClassPostProcessor(二)
上一个章节,笔者向大家介绍了spring是如何来过滤配置类的,下面我们来看看在过滤出配置类后,spring是如何来解析配置类的.首先过滤出来的配置类会存放在configCandidates列表, 在代 ...
- Java源码解析——集合框架(二)——ArrayBlockingQueue
ArrayBlockingQueue源码解析 ArrayBlockingQueue是一个阻塞式的队列,继承自AbstractBlockingQueue,间接的实现了Queue接口和Collection ...
- 【Mybatis源码解析】- 整体架构及原理
整体架构 version-3.5.5 在深入了解Mybatis的源码之前,我们先了解一下Mybatis的整体架构和工作原理,这样有助于我们在阅读源码过程中了解思路和流程. 核心流程 在上一遍的入门程序 ...
- OpenJDK1.8.0 源码解析————HashMap的实现(二)
上一篇文章介绍了HashMap的一部分的知识,算是为下面HashMap的进一步学习做准备吧. 然后写的时候一直在思考的一个问题是,这方面的知识网上的资料也是一抓一大把,即使是这样我为什么还要花费时间去 ...
- Tensorflow源码解析1 -- 内核架构和源码结构
1 主流深度学习框架对比 当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层.比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android ...
- redux源码解析-redux的架构
redux很小的一个框架,是从flux演变过来的,尽管只有775行,但是它的功能很重要.react要应用于生成环境必须要用flux或者redux,redux是flux的进化产物,优于flux. 而且r ...
- 一.jQuery源码解析之总体架构
(function (window, undefined) { //构建jQuery对象 var document = window.document, navigator = window.navi ...
- java源码解析之String类(二)
上一节主要介绍了String类的一些构造方法,主要分为四类 无参构造器:String(),创建一个空字符串"",区别于null字符串,""已经初始化,null并 ...
随机推荐
- 【题解】P5446 [THUPC2018]绿绿和串串(manacher)
[题解]P5446 [THUPC2018]绿绿和串串(manacher) 考虑对于一个串进行\(f\)操作,就是让他变成一个以最后一个节点为回文中心的回文串. 那么对于某个位置\(p\),假如它是一个 ...
- 洛谷$P2153\ [SDOI2009]$ 晨跑 网络流
正解:网络流 解题报告: 传送门$QwQ$ 题目好长昂,,,大概概括下$QwQ$.就说有$n$个节点$m$条边,然后要求每次走的路径都不一样,问最多能走多少次,然后在次数最多的前提下问路径最短是多少$ ...
- SpringBoot系列之集成Dubbo示例教程
一.分布式基本理论 1.1.分布式基本定义 <分布式系统原理与范型>定义: "分布式系统是若干独立计算机的集合,这些计算机对于用户来说就像单个相关系统" 分布式系统(d ...
- Linux学习之路--shell学习
shell基础知识 什么是Shell Shell是命令解释器(command interpreter),是Unix操作系统的用户接口,程序从用户接口得到输入信息,shell将用户程序及其输入翻译成操作 ...
- ocx控件的坑
前言 这还是第一次写博客,以前太懒了,现在发现是很有必要记录下这些经验和问题的.最近项目中有个需求(报表单据需要客户签名,连接签字板,把签名单据同步到服务器上),需要和硬件交互,当时硬件商提供了ocx ...
- Flask 作者 Armin Ronacher:我不觉得有异步压力
英文 | I'm not feeling the async pressure[1] 原作 | Armin Ronacher,2020.01.01 译者 | 豌豆花下猫@Python猫 声明 :本翻译 ...
- springboot2 整合redis
1.添加依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...
- Spring Boot2 系列教程 (十二) | 整合 thymeleaf
前言 如题,今天介绍 Thymeleaf ,并整合 Thymeleaf 开发一个简陋版的学生信息管理系统. SpringBoot 提供了大量模板引擎,包含 Freemarker.Groovy.Thym ...
- 修理牛棚 贪心 USACO
今天开始终于可以刷USACO的题啦 准备每一道都发一个题解 1010: 1.3.2 Barn Repair 修理牛棚 时间限制: 1 Sec 内存限制: 128 MB提交: 9 解决: 7[提交] ...
- JDBC超时设置【转】
恰当的JDBC超时设置能够有效地减少服务失效的时间.本文将对数据库的各种超时设置及其设置方法做介绍. 真实案例:应用服务器在遭到DDos攻击后无法响应 在遭到DDos攻击后,整个服务都垮掉了.由于第四 ...