SPOJ Another Longest Increasing Subsequence Problem

传送门:https://www.spoj.com/problems/LIS2/en/

题意:

给定 N个数对 \((x_i,y_i)\),求最长上升子序列的长度。上升序列定义为满足\((x_i,y_i)\)对i<j 有 \(x_i<x_j\) 且 \(y_i<y_j\)

题解:

一个三维最长链问题

第一维是存位置,第二维存x,第三维存y

注意查询是查询到p[i].z-1然后更新

细节方面和HDU4742是一样的

详情:https://www.cnblogs.com/buerdepepeqi/p/11193426.html

代码:

#include <set>
#include <map>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
const int maxn = 3e5 + 5;
const int INF = 0x3f3f3f3f;
struct node {
int x, y, z;
} p[maxn];
bool cmpx(node A, node B) {
return A.x < B.x;
}
bool cmpy(node A, node B) {
return A.y < B.y;
}
int lowbit(int x) {
return x & (-x);
}
int n;
int dp[maxn];
int Hash[maxn];
int bit[maxn];
void add(int pos, int val) {
while(pos < n + 2) {
bit[pos] = max(bit[pos], val);
pos += lowbit(pos);
}
}
int sum(int pos) {
int res = 0;
while(pos) {
res = max(res, bit[pos]);
pos -= lowbit(pos);
}
return res;
}
void init(int x) {
for(int i = x; i < n + 2; i += lowbit(i))
bit[i] = 0;
}
void solve(int l, int r) { int mid = (l + r) >> 1;
sort(p + l, p + mid + 1, cmpy);
sort(p + mid + 1, p + r + 1, cmpy);
int j = l;
for(int i = mid + 1; i <= r; i++) {
while(j <= mid && p[j].y < p[i].y) {
add(p[j].z, dp[p[j].x]);
j++;
}
int tmp = sum(p[i].z - 1) + 1;
dp[p[i].x] = max(dp[p[i].x], tmp);
}
for(int i = l; i <= mid; i++) init(p[i].z);
sort(p + mid + 1, p + r + 1, cmpx);
}
void CDQ(int l, int r) {
if(l == r) {
return;
}
int mid = (l + r) >> 1;
CDQ(l, mid);
solve(l, r);
CDQ(mid + 1, r);
}
int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d%d", &p[i].y, &p[i].z);
p[i].x = i;
dp[i] = 1;
Hash[i] = p[i].z;
} sort(Hash + 1, Hash + n + 1);
int cnt = unique(Hash + 1, Hash + n + 1) - Hash - 1;
for(int i = 1; i <= n; i++) {
p[i].z = lower_bound(Hash + 1, Hash + cnt + 1, p[i].z) - Hash;
}
// debug1(n);
CDQ(1, n);
int ans = 0;
for(int i = 1; i <= n; i++) {
ans = max(ans, dp[i]);
}
printf("%d\n", ans); return 0;
}

SPOJ Another Longest Increasing Subsequence Problem 三维最长链的更多相关文章

  1. SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治

    Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...

  2. SPOJ:Another Longest Increasing Subsequence Problem(CDQ分治求三维偏序)

    Given a sequence of N pairs of integers, find the length of the longest increasing subsequence of it ...

  3. SPOJ LIS2 - Another Longest Increasing Subsequence Problem(CDQ分治优化DP)

    题目链接  LIS2 经典的三维偏序问题. 考虑$cdq$分治. 不过这题的顺序应该是 $cdq(l, mid)$ $solve(l, r)$ $cdq(mid+1, r)$ 因为有个$DP$. #i ...

  4. SPOJ - LIS2 Another Longest Increasing Subsequence Problem

    cdq分治,dp(i)表示以i为结尾的最长LIS,那么dp的递推是依赖于左边的. 因此在分治的时候需要利用左边的子问题来递推右边. (345ms? 区间树TLE /****************** ...

  5. [BZOJ2225][SPOJ2371]LIS2 - Another Longest Increasing Subsequence Problem:CDQ分治+树状数组+DP

    分析 这回试了一下三级标题,不知道效果怎么样? 回到正题,二维最长上升子序列......嗯,我会树套树. 考虑\(CDQ\)分治,算法流程: 先递归进入左子区间. 将左,右子区间按\(x\)排序. 归 ...

  6. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  7. 【Lintcode】076.Longest Increasing Subsequence

    题目: Given a sequence of integers, find the longest increasing subsequence (LIS). You code should ret ...

  8. LintCode刷题笔记--Longest Increasing Subsequence

    标签: 动态规划 描述: Given a sequence of integers, find the longest increasing subsequence (LIS). You code s ...

  9. [LeetCode] Longest Increasing Subsequence

    Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...

随机推荐

  1. markdown-it + highlight.js简易实现

    markdown-it 官方demo markdown-it 文档 1.配置highlightjs,针对markdown中各种语言高亮,针对对应的标签 pre code 里面的样式 -- index. ...

  2. MacOS利用Terminal访问远程Linux服务器

    常用命令 默认22端口访问 ssh x.x.x.x 指定端口访问 ssh x.x.x.x -p port 指定用户访问(默认是MacOS当前用户) ssh user@x.x.x.x [-p port] ...

  3. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十六章:实例化和截头锥体裁切

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十六章:实例化和截头锥体裁切 代码工程地址: https://git ...

  4. 『创造 Cloud Toolkit』贡献排行榜——如何参与定义一款 IDE 插件?

    自从我们团队在去年12月发布 Cloud Toolkit(一款让开发部署效率提速 8 倍的 IDE 插件)以来,已帮助数以万计的开发者们提高了云上的部署效率,期间,开发者们不仅积极地向 Cloud T ...

  5. PHP5.2 汉字json_encode

    //对汉字编码 private function url_encode($str) { if(is_array($str)) { foreach($str as $key=>$value) { ...

  6. @bzoj - 3750@ [POI2015] Pieczęć

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 一张 n*m 的方格纸,有些格子需要印成黑色,剩下的格子需要保留 ...

  7. Strange Way to Express Integers

    I. Strange Way to Express Integers 题目描述 原题来自:POJ 2891 给定 2n2n2n 个正整数 a1,a2,⋯,ana_1,a_2,\cdots ,a_na​ ...

  8. sqlserver 序号重新计算

    DBCC CHECKIDENT('leshua_TradeData',NORESEED) DBCC CHECKIDENT('表名',NORESEED)

  9. hdu 3234 Exclusive-OR (并查集)

    Problem - 3234 题意不难理解,就是给出一些断言,以及一些查询,回答查询或者在找到断言矛盾以后沉默不做任何事. 这题其实就是一个并查集的距离存储问题,只要记录并查集元素的相对值以及绝对值就 ...

  10. 什么是CGI、FastCGI、PHP-CGI、PHP-FPM、Spawn-FCGI?

    https://mp.weixin.qq.com/s/Co1LxS2h_ILh9syOmshjZg 什么是CGI CGI全称是“公共网关接口”(Common Gateway Interface),HT ...