M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。

 
Input
第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000000)
Output
输出走法的数量 Mod 10^9 + 7。
Input示例
2 3
Output示例
3
思路: 我们从左上走到右下 一共要往下走n-1次 往右走 m-1次 一共走了 n+m-2次但是不同的地方可以在向下走(n-1)次 或者向右走(m-1)次 所以我们在这里有C(n+m-2,n-1)或者
C(n+m-2,m-1)种走法 这两种是相同的。而我们在运算时 对组合数取余 由于组合数存在除法, 而取余不能再商之后取余,所以这里我们需要将除法转换成乘法来做。
 (( A!)/(B!)) % P等价于(A! * (B!)^-1)%P 而 B!^-1 成为B!的逆元由费马小定理可知 B!^-1 = B^(P-2)  然后B^P-2 可以由快速幂来求 
  PS:这里的P要求为质数
 #include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long LL;
const LL mod = 1e9+;
LL m,n;
LL Pow(LL a,LL b)//快速幂 a的b次方
{
LL ans=;
while(b)
{
if(b&)
ans=ans*a%mod;
b>>=;
a=a*a%mod;
}
return ans;
}
LL index(int x) //求阶乘取余
{
LL ans = ;
for(int i=;i<=x;i++)
ans = ans*i%mod;
return ans;
}
LL C(int a,int b)//组合数
{
LL ans = ;
ans = ans%mod * index(a)%mod;
ans = ans%mod * Pow(index(a-b),mod-)%mod;
ans = ans%mod * Pow(index(b),mod-)%mod; return ans%mod;
}
int main()
{
cin>>m>>n;
cout<<C(n+m-,n-)<<endl;
return ;
}

1119 机器人走方格 V2 (组合数学)的更多相关文章

  1. 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)

    题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...

  2. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  3. 1119 机器人走方格 V2(组合)

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于 ...

  4. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  5. 1119 机器人走方格 V2

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mo ...

  6. 51nod 1119 机器人走方格 V2 【组合数学】

    挺水的但是我好久没写组合数了- 用这样一个思想,在1~m列中,考虑每一列上升几格,相当于把n-1个苹果放进m个篮子里,可以为空,问有几种方案. 这个就是一个组合数学经典问题了,考虑n个苹果放进m个篮子 ...

  7. 51nod1119 机器人走方格 V2

    终于学到了求组合数的正确姿势 //C(n+m-2,m-1) #include<cstdio> #include<cstring> #include<cctype> ...

  8. [51nod1119]机器人走方格V2

    解题关键: 1.此题用dp的方法可以看出,dp矩阵为杨辉三角,通过总结,可以得出 答案的解为$C_{n + m - 2}^{n - 1}$ 2.此题可用组合数学的思想考虑,总的步数一共有$n+m-2$ ...

  9. 51nod_1119:机器人走方格 V2

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 转化成杨辉三角就好辣@_@ #include< ...

随机推荐

  1. Servlet容器container

    通俗点说,所谓容器,就是放东西的地方.Servlet容器自然就是放Servlet的地方.J2EE开发,是有分工的.一般的程序员,写得都是应用开发,我们会按照一定的规则,开发我们的系统,比如用Servl ...

  2. Spring → 01:概述

    一.了解Spring发展 Spring是一个开源框架,Spring是于2003年兴起的一个轻量级的Java开发框架,由Rod Johnson在其著作Expert One-On-One J2EE Dev ...

  3. 2018-11-21-WPF-解决-ViewBox--不显示线的问题

    title author date CreateTime categories WPF 解决 ViewBox 不显示线的问题 lindexi 2018-11-21 09:37:53 +0800 201 ...

  4. spark编译与onyarn的执行

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u014393917/article/details/24640715 Spark on yarn执行 ...

  5. docker查看运行容器详细信息

    使用docker ps命令可以查看所有正在运行中的容器列表, 使用docker inspect命令我们可以查看更详细的关于某一个容器的信息. $ docker inspect 容器id/image

  6. SQL if语句简要

    if语句 可以作为表达式用 可以在存储过程中作为流程控制语句用 表达式 IF(条件,条件true,条件false) 示例 sex字段m,f 互换 update salary set sex = if( ...

  7. 国内唯一,阿里云入选全球区块链云服务报告,领先AWS、Google

    摘要: 作为此次Gartner报告中唯一上榜的中国科技公司,阿里云获得六个评判维度的最高分,排名第二 近日,知名调研机构Gartner发布了全球领先公共云厂商区块链服务能力报告,作为唯一上榜的中国科技 ...

  8. 第四次C++

    继承与派生 一.什么是继承和派生 所谓继承就是从先辈处得到属性和行为特征.类的继承,是新的类从已有类那里得到已有的特性.从另一个角度来看这个问题,从已有类产生新类的过程就是类的派生.类的继承与派生机制 ...

  9. 2018-8-10-win10-uwp-如何在DataTemplate绑定方法

    title author date CreateTime categories win10 uwp 如何在DataTemplate绑定方法 lindexi 2018-08-10 19:16:50 +0 ...

  10. oracle函数 NLS_LOWER(x[,y])

    [功能]返回字符串并将字符串的变为小写; [参数]x字符型表达式 [参数]Nls_param可选,指定排序的方式(nls_sort=) . SCHINESE_RADICAL_M(部首.笔画) SCHI ...