题目:

《Generating Question-Answer Hierarchies》

作者:

Kalpesh Krishna & Mohit Iyyer

What:

1.SQUASH(specificity-controlled Question-Answer Hierarchies)

2.将输入文本转化成为具有一般、具体标签的层级问答对(自上而下的树形结构),用户可以点击一般问题进而展开得到具体的问题。

3.用于解决SQUASH的流水线系统以及用于评估它的众包方法

HOW:

1.问题分类:将问题分为三个粗糙的标签:GENERAL、SPECIFIC、YES-NO,根据问题的特殊性对SQuAD、QuAC和CoQA 中的问题进行分类。不满足任何模板或规则的问题,手动标注1000条数据用CNN分类,最终将所有问题都运行了基于规则的方法,并将分类器应用于规则未涵盖的问题。

2.生成QA对

将段落中的每个句子作为潜在的答案范围,以及所有实体和数字(作为具体问题的答案)

手动删除一些笼统的问题

使用两层的biL-STM编码器和单层的LSTM解码器来生成问题,将解码器的特殊性级别设置为“一般”,“具体”和“是-否”。每个答案范围生成十三个候选问题。

3.生成有层次的QA对

为每一个具体问题泛化一个父问题,使每个一般问题的预测答案与预测答案的重叠(词级精度)最大化。如果没有与特定问题的答案重叠的一般问题的答案,将其映射到最接近的一般问题(要求其答案在特定问题的答案之前)。

4.模型评估

生成问题评估:使用众包实验在QuAC开发集的文档上评估了SQUASH流程

结构正确性评估

5.缺点:

数据集存在缺陷、信息冗余、缺乏常识性知识、对于一个段落生成了多个QA对

阅读过程中产生的疑问:

  1. 为什么使用top-10抽样方法?

  2. 问题是如何生成的?

  3. 为什么要以每个段落为一个范围进行问题的生成?若是用很多段论述同一个问题要如何解决?

论文阅读笔记:《Generating Question-Answer Hierarchies》的更多相关文章

  1. 《MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment》论文阅读笔记

    出处:2018 AAAI SourceCode:https://github.com/salu133445/musegan abstract: (写得不错 值得借鉴)重点阐述了生成音乐和生成图片,视频 ...

  2. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

  3. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  4. 生成对抗网络(Generative Adversarial Networks, GAN)

      生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一.   GAN 主要包括了两个部分,即 ...

  5. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  6. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  7. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

  8. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  9. SalGAN: Visual saliency prediction with generative adversarial networks

    SalGAN: Visual saliency prediction with generative adversarial networks 2017-03-17 摘要:本文引入了对抗网络的对抗训练 ...

  10. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

随机推荐

  1. C#关键字扫盲——Tuple(元组类) 、ValueTuple(值元组)

    原文:C#关键字扫盲--Tuple(元组类) .ValueTuple(值元组) 版权声明:本文为博主原创文章,随意转载. https://blog.csdn.net/Michel4Liu/articl ...

  2. JUnit中Assert简单介绍

    junit中的assert方法全部放在Assert类中,总结一下junit类中assert方法的分类.1.assertTrue/False([String message,]boolean condi ...

  3. Linux安装配置Nginx服务器

    如有需要可以加我Q群[308742428]大家一起讨论技术,有偿服务. 后面会不定时为大家更新文章,敬请期待. 喜欢的朋友可以关注下. 前言 今天搭建nginx服务器,来访问静态资源文件. Nginx ...

  4. 关于solr的一些知识

    简单了解 怎么理解Solr是个什么东西呢? 引用官网的介绍, Solr is the popular, blazing-fast, open source enterprise search plat ...

  5. vue组件库的基本开发步骤(源代码)

    上次发布的随笔忘记提供源代码了,今天特地来补充,如果有什么问题,欢迎大家为我修改指正. vue.config.js文件: const path = require('path') function r ...

  6. SpringMVC以及SSM整合

    本人才疏学浅,如有错误欢迎批评!转载请注明出处:https://www.cnblogs.com/lee-yangyaozi/p/11226145.html SpringMVC概述 Spring Web ...

  7. python字典拼接方法

    python的dict拼接有多种方法,其中一种很好用而且速度非常快: x = {**a, **b} 效果等价于: x = a.copy() x.update(b) 注意update()是没有返回值的 ...

  8. new Date() vs Calendar.getInstance().getTime()

    System.currentTimeMillis() vs. new Date() vs. Calendar.getInstance().getTime() System.currentTimeMil ...

  9. SSD网络结构

    SSD算法,其英文全名是Single Shot MultiBox Detector. SSD的网络结构流程如下图所示:SSD总共11个block,相比较于之前的VGG16,改变了第5个block的第4 ...

  10. javascript与jquery删除元素节点

    今天工作的时候遇到一个删除的问题,研究了下发现是没有很好的区分js和jquery的删除方法,在此澄清一下 工作的代码如下 // 删除图片 $("#js_takePhotoWrap" ...