题目链接:

点我

题目分析:

玄学\(dp\)

设\(val[s[i] - 'a' + 1]\)表示字母\(s[i]\)的花费

首先发现对于一个已经回文了的串\(s[i, j]\),在\(s[i - 1]\)的位置上删去和在\(s[j + 1]\)的位置上加上本质上是一样的,所以\(val[s[i] - 'a' + 1]\)直接取增删的最小即可

设\(dp[i][j]\)表示把\(s[i, j]\)变成回文串的最小代价,初始化所有花费为\(INF\),\(dp[i][i] =0\),如果有\(s[i] == s[i + 1]\),那么有\(dp[i][j + 1] = 0\)

然后是玄学的转移方程,稍微分情况讨论一下:

  • 若有\(s[i - 1] == s[j + 1]\),则\(dp[i - 1][j + 1] = min(dp[i - 1][j + 1], dp[i][j])\)
  • \(dp[i - 1][j] = min(dp[i - 1][j], dp[i][j] + val[s[i - 1] - 'a' + 1])\)
  • \(dp[i][j + 1] = min(dp[i][j + 1], dp[i][j] + val[s[j + 1] - 'a' + 1])\)

答案即为\(dp[1][m]\)

代码:

#include<bits/stdc++.h>
#define N (2000 + 10)
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + c - '0'; c = getchar();}
return cnt * f;
}
const int INF = 1000000000 + 7;
int n, m, x, y;
char s[N], c;
int val[30], dp[N][N];
int main() {
n = read(), m = read();
scanf("%s", s + 1);
for (register int i = 1; i <= n; i++) {
cin >> c;
x = read(), y = read();
val[c - 'a' + 1] = min(x, y);
}
for (register int i = 0; i <= m; ++i)
for (register int j = 0; j <= m; ++j) dp[i][j] = INF;
for (register int i = 1; i <= m; i++) {
dp[i][i] = 0;
if (s[i] == s[i + 1]) dp[i][i + 1] = 0;
}
for (register int l = 0; l <= m; ++l)
for (register int i = 1; i <= m; ++i) {
int j = i + l;
if (s[i - 1] == s[j + 1]) dp[i - 1][j + 1] = min(dp[i - 1][j + 1], dp[i][j]);
dp[i - 1][j] = min(dp[i - 1][j], dp[i][j] + val[s[i - 1] - 'a' + 1]);
dp[i][j + 1] = min(dp[i][j + 1], dp[i][j] + val[s[j + 1] - 'a' + 1]);
}
printf("%d", dp[1][m]);
return 0;
}

洛谷P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome的更多相关文章

  1. 洛谷 2890 [USACO07OPEN]便宜的回文Cheapest Palindrome

    传送门 一道最简单的区间dp,然而我还是抄了题解. //Twenty #include<algorithm> #include<iostream> #include<cs ...

  2. 2018.06.29 洛谷P2890 [USACO07OPEN]便宜的回文(简单dp)

    P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome 时空限制 1000ms / 128MB 题目描述 Keeping track of all the cows c ...

  3. [DP]P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome

    题目翻译(借鉴自@ 神犇的蒟蒻) [问题描述] 追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统.他在每头牛身 上安装了一个电子身份标签,当奶牛通过扫描器的时候,系统可以读取奶牛的身 ...

  4. [USACO07OPEN]便宜的回文Cheapest Palindrome

    字串S长M,由N个小写字母构成.欲通过增删字母将其变为回文串,增删特定字母花费不同,求最小花费.        题目描述见上            显然 这是一道区间DP 从两头DP,枚举长度啥的很套 ...

  5. [luoguP2890] [USACO07OPEN]便宜的回文Cheapest Palindrome(DP)

    传送门 f[i][j] 表示区间 i 到 j 变为回文串所需最小费用 1.s[i] == s[j] f[i][j] = f[i + 1][j - 1] 2.s[i] != s[j] f[i][j] = ...

  6. 洛谷P1207 [USACO1.2]双重回文数 Dual Palindromes

    P1207 [USACO1.2]双重回文数 Dual Palindromes 291通过 462提交 题目提供者该用户不存在 标签USACO 难度普及- 提交  讨论  题解 最新讨论 暂时没有讨论 ...

  7. 洛谷oj U3936(分成回文串) 邀请码:a0c9

    题目链接:传送门 题目大意:略 题目思路:DP 先预处理,分别以每个字母为中心处理能形成的回文串,再以两个字母为中心处理能形成的回文串. 然后 dp[i] 表示1~i 能形成的数目最少的回文串. 转移 ...

  8. 【洛谷4287】[SHOI2011] 双倍回文(Manacher算法经典题)

    点此看题面 大致题意: 求一个字符串中有多少个长度为偶数的回文串,它的一半也是回文串. \(Manacher\)算法 这应该是\(Manacher\)算法一道比较好的入门题,强烈建议在做这题之前先去学 ...

  9. 洛谷 P1207 [USACO1.2]双重回文数 Dual Palindromes

    P1207 [USACO1.2]双重回文数 Dual Palindromes 题目描述 如果一个数从左往右读和从右往左读都是一样,那么这个数就叫做“回文数”.例如,12321就是一个回文数,而7777 ...

随机推荐

  1. 1-电脑C盘(系统盘)清理

    推荐,亲测有效! 转自: https://baijiahao.baidu.com/s?id=1612762644229315967&wfr=spider&for=pc

  2. tp5.0x代码执行

    1.拿到站首先平复一下心情 看了一下robots.txt结构像dedecms,网站还存在CDN,日了狗看到这里其实都想放弃来着,懒癌晚期,然后接着使用云悉平台走了一波,看了一下得到真实IP,看来只给w ...

  3. RDD运行原理

  4. sleep()与wait()的区别

    ①sleep()实现线程阻塞的方法,我们称之为“线程睡眠”,方式是超时等待,怎么理解?就是sleep()通过传入“睡眠时间”作为方法的参数,时间一到就从“睡眠”中“醒来”: ②wait()方法实现线程 ...

  5. android 休眠状态下 后台数据上传

    下面来说一下黑屏情况下传递数据: 要实现程序退出之后,仍然可以传递数据,请求网络,必须采用service,service可以保持在后台一直运行,除非系统资源极其匮乏,否则一般来说service是不会被 ...

  6. linux 将子文件夹的文件复制到 当前目录中

    linux 将子文件夹的文件复制到 当前目录中,如 目录结构大概是 -sh |__ db_backup |___ test |____ 2018_01_01_00_00_00 |_____ 2018_ ...

  7. SQLSTATE[HY000]: General error: 1366 Incorrect string value

    在Laravel项目的 storages/logs/Laravel.log看到的错误信息片段: SQLSTATE[HY000]: General error: 1366 Incorrect strin ...

  8. 在vue中使用高德地图vue-amap

    1.安装 vue-amap我安装指定版本0.5.10的版本 npm i --save vue-amap@0.5.10 2.main.js中的配置 key申请地址教程:https://lbs.amap. ...

  9. AIO 详解

    AIO(Asynchronous Input and Output) 异步IO则采用"订阅-通知"模式: 即应用程序向操作系统注册IO监听,然后继续做自己的事情. 当操作系统发生I ...

  10. jvm虚拟内存分布 与 GC算法

    jvm虚拟内存分布 程序计数器(PC寄存器)(线程私有): 每个线程启动的时候,都会创建一个PC(Program Counter,程序计数器)寄存器. PC寄存器的内容总是指向下一条将被执行指令的地址 ...