题目

传送门:QWQ

分析

区间dp, 详见代码

代码

/**************************************************************
Problem: 1260
User: noble_
Language: C++
Result: Accepted
Time:0 ms
Memory:1328 kb
****************************************************************/ #include <bits/stdc++.h>
using namespace std;
char s[];
int dp[][];
int main()
{
for(int i=;i<;i++) for(int j=;j<;j++) dp[i][j]=<<;
scanf("%s",s+);
int n=strlen(s+);
for(int i=;i<=n;i++) dp[i][i]=; for(int l=;l<=n;l++)
for(int i=;i+l-<=n;i++)
{
int j=i+l-;
if(s[i]==s[j])
{
if(l==) dp[i][j]=;
else
{
dp[i][j]=min(dp[i+][j],dp[i][j-]);
dp[i][j]=min(dp[i][j],dp[i+][j-]+);
}
}
else for(int k=i;k<=j;k++) dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+][j]);
}
printf("%d",dp[][n]);
return ;
}

【BZOJ】1260 [CQOI2007]涂色paint(区间dp)的更多相关文章

  1. BZOJ 1260: [CQOI2007]涂色paint( 区间dp )

    区间dp.. dp( l , r ) 表示让 [ l , r ] 这个区间都变成目标颜色的最少涂色次数. 考虑转移 : l == r 则 dp( l , r ) = 1 ( 显然 ) s[ l ] = ...

  2. [BZOJ 1260][CQOI2007]涂色paint 题解(区间DP)

    [BZOJ 1260][CQOI2007]涂色paint Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为 ...

  3. 【DP】BZOJ 1260: [CQOI2007]涂色paint

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 893  Solved: 540[Submit][Stat ...

  4. [BZOJ1260][CQOI2007]涂色paint 区间dp

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 1575  Solved: 955 [Submit][S ...

  5. BZOJ 1260 [CQOI2007]涂色paint(区间DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1260 [题目大意] 假设你有一条长度为n的木版,初始时没有涂过任何颜色 每次你可以把一 ...

  6. BZOJ 1260: [CQOI2007]涂色paint【区间DP】

    Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:RGBGR. 每次你可以把一段连续 ...

  7. 1260. [CQOI2007]涂色【区间DP】

    Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:RGBGR. 每次你可以把一段连续 ...

  8. 【bzoj1260】[CQOI2007]涂色paint 区间dp

    题目描述 给出一个序列,每次可以给一段染成同一种颜色,问最少要染多少次能够染成给定方案. 输入 输入仅一行,包含一个长度为n的字符串,即涂色目标.字符串中的每个字符都是一个大写字母,不同的字母代表不同 ...

  9. B1260 [CQOI2007]涂色paint 区间dp

    这个题和我一开始想的区别不是很大,但是要我独自做出来还是有一些难度. 每一次涂色 只有这两种可能: 1) 把一段未被 覆盖过的区间 涂成 * 色 2) 把一段被一种颜色覆盖的区间涂成 * 色 (并且 ...

  10. CQOI2007 涂色 paint (区间dp)

    听说这道题是当年省选题 于是兴致勃勃拿来做了做 至于如何想到思路... 事实上没想象中那么简单... 脑阔挺疼的... (一开始都没看出来是区间dp) 想到可以区间dp,然后就似乎没啥大问题 枚举区间 ...

随机推荐

  1. .net的session详解

    http://blog.csdn.net/justin_wkf/article/details/5746914#comments

  2. python最重要的模块logging

    logging模块 这个模块是目前最重要的模块!!!我一定给讲透彻一点 很多程序都有记录日志的需求,并且日志中包含的信息即有正常的程序访问日志,还可能有错误.警告等信息输出,python中的loggi ...

  3. IOS开发 多线程编程 - NSOperationQueue

    一.简介 一个NSOperation对象可以通过调用start方法来执行任务,默认是同步执行的.也可以将NSOperation添加到一个NSOperationQueue(操作队列)中去执行,而且是异步 ...

  4. SQL基础三(例子)

    -----------聚合函数使用------------------------ --1.查询student表中所有学生人数 select count(stuno) from student --2 ...

  5. Failed to instantiate the default view controller for UIMainStoryboardFile 'Main' - perhaps the designated entry point is not set?

  6. Spring配置--tx事务配置方式

    前段时间对Spring的事务配置做了比较深入的研究,在此之间对Spring的事务配置虽说也配置过,但是一直没有一个清楚的认识.通过这次的学习发觉Spring的事务配置只要把思路理清,还是比较好掌握的. ...

  7. bzoj 2850 巧克力王国

    bzoj 2850 巧克力王国 钱限题.题面可以看这里. 显然 \(x\) \(y\) 可以看成坐标平面上的两维,蛋糕可以在坐标平面上表示为 \((x,y)\) ,权值为 \(h\) .用 \(kd- ...

  8. Codeforces 633H Fibonacci-ish II【线段树】

    LINK 题目大意 给你一个序列a,Q次询问,每次询问\([l,r]\) 把\([l,r]\)的数排序去重,得到序列b,f是斐波那契数列 求\(\sum_{b=1}^{len} b_if_i\) 思路 ...

  9. ruby 的数组操作

    转自:http://fujinbing.iteye.com/blog/1126232 1. & [ 1, 1, 3, 5 ] & [ 1, 2, 3 ] # => [1, 3] ...

  10. 在 ubuntu 中安装 python3.5 tornado pymysql

    一.在 ubuntu 中安装 python3.5 1.首先,在系统中是自带python2.7的.不要卸载,因为一些系统的东西是需要这个的.python2.7和python3.5是可以共存的. 命令如下 ...