转载自http://blog.csdn.net/pi9nc/article/details/18655239

1,MP算法【盗用2】

MP算法是一种贪心算法(greedy),每次迭代选取与当前样本残差最接近的原子,直至残差满足一定条件。

求解方法

选择最接近残差的原子:MP里定义用向量内积原子与残差的距离,我们用R表示残差,di表示原子,则:

Max[Dist(R,di)]=max[<R,di>];

残差更新:R=R-<R,di>I;继续选择下一个,直至收敛;

需要注意的是,MP算法中要求字典原子||di||=1,上面的公式才成立。

我们用二维空间上的向量来表示,用如下的图来表述上面的过程:

上图中d1,d2,d3表示归一化的原子,红色向量r表示当前残差;

进过内积计算,<r,d3>最大,于是r分解为d3方向以及垂直于d3方向的两个向量(<r,d3>d3及r-<r,d3>d3),把d3方向的分量(<r,d3>d3)加入到已经求得的重构项中,那么绿色向量(r-<r,d3>d3)变为新的残差。然后迭代即可。

再一轮迭代得到如下:

R往d1方向投影分解,绿色向量成为新的残差。

具体算法:

收敛性

从上面的向量图我们可以清楚地看出,k+1的残差Rk+1是k步残差Rk的分量。根据直角三角形斜边大于直角边,|Rk+1|<=|Rk|,则算法收敛。

注意事项:

1.上面也讲过,字典的原子是归一化的,也就是||di||=1,因为我们选取max<R,di>时,如果di长度不统一,不能得出最好的投影。

2.如果我们的字典只有两个向量d1,d2,那么MP算法会在这两个向量间交叉迭代投影,也就是f=a1d1+a2d2+a3d1+a4d2+…..;也就是之前投影过的原子方向,之后还有可能投影(即原子有可能再次被选择)。换句话说,MP的方向选择不是最优的,是次优的。

如下图:

这也是其改进版本OMP要改进的地方。

2,什么是OMP算法

OMP算法的改进之处在于:在分解的每一步对所选择的全部原子进行正交化处理,这使得在精度要求相同的情况下,OMP算法的收敛速度更快。

在正交匹配追踪OMP中,残差是总与已经选择过的原子正交的。这意味着一个原子不会被选择两次,结果会在有限的几步收敛。另外还可以选择弱匹配追踪(后话)【3】。

MP算法的次最优性来源其残差只与当前投影方向垂直,这样在接下来的投影中,很有可能会再次投影到原来的方向。

于是,在投影时,如果我们使得残差Rk+1与x1-xk+1的所有向量垂直,则可以克服这个问题,如下:

求解方法

假设我们已经得到了第k步的最优解:

我们要继续更新到第k+1步,目标是得到:

需要注意的是,我们下一步更新时,之前原子的系数 也要更新,否则不能满足约束。

于是我们需要求得如何更新之前原子系数 ,以及如何求得下一个投影方向 。

收敛性:

同样根据勾股定理,得到如下:

于是算法收敛。

具体步骤:

最后,贴一个sparse求解的工具包,里面包含了MP,OMP算法的代码

http://spams-devel.gforge.inria.fr/

参考文献

【1】http://blog.csdn.net/scucj/article/details/7467955   MP和OMP算法及其思想

【2】http://blog.csdn.net/pi9nc/article/details/18655239  稀疏编码最优化解法

【3】https://chunqiu.blog.ustc.edu.cn/?p=634  有讲到弱匹配追踪

MP 及OMP算法解析的更多相关文章

  1. 稀疏分解中的MP与OMP算法

    MP:matching pursuit匹配追踪 OMP:正交匹配追踪 主要介绍MP与OMP算法的思想与流程,解释为什么需要引入正交? !!今天发现一个重大问题,是在读了博主的正交匹配追踪(OMP)在稀 ...

  2. MP和OMP算法

    转载:有点无耻哈,全部复制别人的.写的不错 作者:scucj 文章链接:MP算法和OMP算法及其思想 主要介绍MP(Matching Pursuits)算法和OMP(Orthogonal Matchi ...

  3. MP算法和OMP算法及其思想

    主要介绍MP(Matching Pursuits)算法和OMP(Orthogonal Matching Pursuit)算法[1],这两个算法尽管在90年代初就提出来了,但作为经典的算法,国内文献(可 ...

  4. MP算法、OMP算法及其在人脸识别的应用

    主要内容: 1.MP算法 2.OMP算法 3.OMP算法的matlab实现 4.OMP在压缩感知和人脸识别的应用 一.MP(Matching Pursuits)与OMP(Orthogonal Matc ...

  5. 浅谈压缩感知(十九):MP、OMP与施密特正交化

    关于MP.OMP的相关算法与收敛证明,可以参考:http://www.cnblogs.com/AndyJee/p/5047174.html,这里仅简单陈述算法流程及二者的不同之处. 主要内容: MP的 ...

  6. 地理围栏算法解析(Geo-fencing)

    地理围栏算法解析 http://www.cnblogs.com/LBSer/p/4471742.html 地理围栏(Geo-fencing)是LBS的一种应用,就是用一个虚拟的栅栏围出一个虚拟地理边界 ...

  7. KMP串匹配算法解析与优化

    朴素串匹配算法说明 串匹配算法最常用的情形是从一篇文档中查找指定文本.需要查找的文本叫做模式串,需要从中查找模式串的串暂且叫做查找串吧. 为了更好理解KMP算法,我们先这样看待一下朴素匹配算法吧.朴素 ...

  8. Peterson算法与Dekker算法解析

    进来Bear正在学习巩固并行的基础知识,所以写下这篇基础的有关并行算法的文章. 在讲述两个算法之前,需要明确一些概念性的问题, Race Condition(竞争条件),Situations  lik ...

  9. OMP算法代码学习

    正交匹配追踪(OMP)算法的MATLAB函数代码并给出单次测试例程代码 测量数M与重构成功概率关系曲线绘制例程代码 信号稀疏度K与重构成功概率关系曲线绘制例程代码   参考来源:http://blog ...

随机推荐

  1. C#指南,重温基础,展望远方!(13)C#泛型

    一.什么是泛型? 泛型是 2.0 版 C# 语言和公共语言运行库 (CLR) 中的一个非常重要的新功能. 我们在编程程序时,经常会遇到功能非常相似的模块,只是它们处理的数据不一样.但我们没有办法,只能 ...

  2. 大比速:remoting、WCF(http)、WCF(tcp)、WCF(RESTful)、asp.net core(RESTful) .net core 控制台程序使用依赖注入(Autofac)

    大比速:remoting.WCF(http).WCF(tcp).WCF(RESTful).asp.net core(RESTful) 近来在考虑一个服务选型,dotnet提供了众多的远程服务形式.在只 ...

  3. 初始化列表(const和引用成员)、拷贝构造函数

    一.构造函数初始化列表 推荐在构造函数初始化列表中进行初始化 构造函数的执行分为两个阶段 初始化段 普通计算段 (一).对象成员及其初始化  C++ Code  1 2 3 4 5 6 7 8 9 1 ...

  4. (Windows Maven项目)Redis数据库的安装和操作实现

              Redis是一个内存数据库,他会把你写入当中的数据缓存到内存中,之后会周期性的往磁盘中写入.这篇文章中介绍的是在Windows环境下利用Maven工具编译运行Java文件实现Red ...

  5. 用bcdedit.exe重建bcd

    使用下面方法之前需要bcdedit.exe和bootsect.exe两个文件,bootsect.exe文件在vista和windows 7的安装光盘的boot目录下,而bcdedit.exe文件可以在 ...

  6. docker 容器自启动

    我们设置了docker自启动后,docker可以管理各种容器了,对于容器我们也可以设置重启的策略. 在容器退出或断电开机后,docker可以通过在容器创建时的--restart参数来指定重启策略: # ...

  7. [转]Oracle 10g如何对用户姓名,按首字母排序、查询

    首先介绍Oracle 9i新增加的一个系统自带的排序函数  1.按首字母排序  在oracle9i中新增了按照拼音.部首.笔画排序功能.设置NLS_SORT值      SCHINESE_RADICA ...

  8. for循环中 i++和++i 是否有区别?

    正常情况下  i++和++i是有区别的: 前者是:先引用,后增加, 后者是:先增加,后引用, 但是在for循环中: for(var i=0;i<10;i++){ System.out.print ...

  9. PHP 生成唯一的激活码

    <? php /** * 生成永远唯一的激活码 * @return string */ function create_guid($namespace = null) { static $gui ...

  10. 每日英语:The Perils Of Giving Advice

    I know what you should do and here's my advice. How many times have you heard that (and groaned)? gr ...