bzoj4241: 历史研究(回滚莫队)
这是一个叫做回滚莫队的神奇玩意儿
是询问,而且不强制在线,就决定是你了莫队
如果是每次插入一个数是不是很简单?
然而悲剧的是我们莫队的时候不仅要插入数字还要删除数字
那么把它变成只插入不就行了么?
我们莫队将询问分块的时候,以左端点所在块为第一关键字,右端点(不是右端点所在块)为第二关键字
对于每一个询问,如果左右端点在同一块中,直接暴力处理,复杂度\(O(\sqrt{n})\)
如果不在同一个块中呢?我们把所有左端点在同一块中的一起处理,那么右端点就是单调增的,这一部分只有插入,暴力计算的复杂度是\(O(n)\)
可是左端点的走位很飘啊?我们可以每一次都把左端点移到这一块的最右端,然后让它不断左移,那么这一部分也变成只有插入了
于是总的复杂度为\(O(n\sqrt{n})\)
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R ll x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e5+5;
int n,m;ll ans[N],res;
int bl[N],cnt[N],b[N],a[N],tot,S;
struct node{
int l,r,id;
node(){}
node(R int l,R int r,R int id):l(l),r(r),id(id){}
inline bool operator <(const node &b)const{return bl[l]==bl[b.l]?r<b.r:bl[l]<bl[b.l];}
}q[N];
inline void add(R int x){++cnt[a[x]],cmax(res,1ll*cnt[a[x]]*b[a[x]]);}
ll solve(int l,int r){
static int cnt[N];ll res=0;
fp(i,l,r)cnt[a[i]]=0;
fp(i,l,r)++cnt[a[i]],cmax(res,1ll*cnt[a[i]]*b[a[i]]);
return res;
}
int calc(int i,int id){
int qr=min(n,id*S),r=qr;res=0;
memset(cnt,0,sizeof(cnt));
for(;bl[q[i].l]==id;++i){
if(bl[q[i].l]==bl[q[i].r]){ans[q[i].id]=solve(q[i].l,q[i].r);continue;}
while(r<q[i].r)add(++r);
ll ret=res;
fp(k,q[i].l,qr)add(k);
ans[q[i].id]=res;
fp(k,q[i].l,qr)--cnt[a[k]];
res=ret;
}return i;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read(),S=sqrt(n);
fp(i,1,n)a[i]=b[i]=read(),bl[i]=(i-1)/S+1;
sort(b+1,b+1+n),tot=unique(b+1,b+1+n)-b-1;
fp(i,1,n)a[i]=lower_bound(b+1,b+1+tot,a[i])-b;
fp(i,1,m)q[i].l=read(),q[i].r=read(),q[i].id=i;
sort(q+1,q+1+m);
for(R int i=1,id=1;id<=bl[n];++id)i=calc(i,id);
fp(i,1,m)print(ans[i]);
return Ot(),0;
}
bzoj4241: 历史研究(回滚莫队)的更多相关文章
- BZOJ4241:历史研究(回滚莫队)
Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...
- BZOJ4241历史研究——回滚莫队
题目描述 IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. 日记中记录了连 ...
- bzoj4241/AT1219 历史研究(回滚莫队)
bzoj4241/AT1219 历史研究(回滚莫队) bzoj它爆炸了. luogu 题解时间 我怎么又在做水题. 就是区间带乘数权众数. 经典回滚莫队,一般对于延长区间简单而缩短区间难的莫队题可以考 ...
- BZOJ.4241.历史研究(回滚莫队 分块)
题目链接 \(Description\) 长度为n的数列,m次询问,每次询问一段区间最大的 \(A_i*tm_i\) (重要度*出现次数) \(Solution\) 好像可以用莫队做,但是取max的操 ...
- 「JOISC 2014 Day1」历史研究 --- 回滚莫队
题目又臭又长,但其实题意很简单. 给出一个长度为\(N\)的序列与\(Q\)个询问,每个询问都对应原序列中的一个区间.对于每个查询的区间,设数\(X_{i}\)在此区间出现的次数为\(Sum_{X_{ ...
- 【题解】BZOJ4241: 历史研究(魔改莫队)
[题解]BZOJ4241: 历史研究(魔改莫队) 真的是好题啊 题意 给你一个序列和很多组询问(可以离线),问你这个区间中\(\max\){元素出现个数\(\times\)元素权值} IOI国历史研究 ...
- AT1219 歴史の研究 回滚莫队
可在vj上提交:https://vjudge.net/problem/AtCoder-joisc2014_c 题意: IOI 国历史研究的第一人--JOI 教授,最近获得了一份被认为是古代 IOI 国 ...
- AT1219 歴史の研究[回滚莫队学习笔记]
回滚莫队例题. 这题的意思大概是 设 \(cnt_i\) 为 l ~ r 这个区间 \(i\) 出现的次数 求\(m\) 次询问 求 l~r 的 max {\(a_i\) * \(cnt_i\)} \ ...
- 【BZOJ4241】历史研究(回滚莫队)
题目: BZOJ4241 分析: 本校某些julao乱膜的时候发明了个"回滚邹队",大概意思就是某个姓邹的太菜了进不了省队回滚去文化课 回滚莫队裸题qwq(话说这个名字是不是莫队本 ...
- 2018.08.14 bzoj4241: 历史研究(回滚莫队)
传送们 简单的回滚莫队,调了半天发现排序的时候把m达成了n... 代码: #include<bits/stdc++.h> #define N 100005 #define ll long ...
随机推荐
- 201671010127 2016-2017-18 Java期末总结
通过本学期Java课程的学习,我对于面向对象的编程语言有了进一步的了解.首先面向对象编程的特点是抽象.封装.继承.多态.由于已经学过c语言,所以对Java的学习实际上是从第四章对向与类开始的,然后学习 ...
- freeswitch由于ext-sip-ip地址填写错误导致32秒拆线问题
通话32秒左右就断掉 检查 profile 的 ext-sip-ip 设置ext-rtp-ip和ext-sip-ip 可以直接设置为外网IP 自建stun-server, 更新后, 过了好几个小时出现 ...
- UV-Sprite动画
[UV-Sprite动画] 下文以单行Sprite纹理作为动画贴图.首先需要输入纹理宽度.Sprint数量.速度: 计算每个Sprite的像素宽与UV宽: 根据_Time,计算当前显示第几个Sprit ...
- MySQL 基础常用命令
一.启动与关闭 1.1 Linux下启动mysql 的命令: a. rpm包安装:service mysqld start b. 源码包安装:/usr/local/mysql/bin/mysqld_s ...
- linux 安装网络监控插件indicator-sysmonitor
1.添加源 sudo add-apt-repository ppa:fossfreedom/indicator-sysmonitor 2.更新源 sudo apt-get update 3.安装 su ...
- Android 重写EditText回车事件
之前遇到的问题没来得及记录下来,趁今晚有空就重新回忆并写下了. 我们在用到EditText这个空间时经常需要重写软键盘中的回车事件以配合我们接下来的响应,比如点击回车变成搜索.发送.完成等. Edit ...
- array_column()
array_column($arr,value) 返回输入数组中某个单一列的值. array_column($arr,value,key) 返回输入数组中某个单一列的值,value是值,key是键.
- laravel form表单提交
控制器 中间层 中间层
- python3--多目录之间的协作的一些必备知识
# Auther: Aaron Fan # 动态获取执行文件的相对路径路径:print(__file__) #动态获取执行文件的绝对路径:import osfile_path = os.path.ab ...
- Mcrosoft中间语言的主要特征
Mcrosoft中间语言显然在.NET FrameWork中起着非常重要的作用.现在讨论一下IL(Intermideate Language)的主要特征.因为面向.NET的所有语言在逻辑上都需要支持I ...