【BZOJ2560】串珠子 状压DP+容斥
【BZOJ2560】串珠子
Description
现在已知所有珠子互不相同,用整数1到n编号。对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci,j根不同颜色的绳子中选择一根将它们连接。如果把珠子看作点,把绳子看作边,将所有珠子连成一个整体即为所有点构成一个连通图。特别地,珠子不能和自己连接。
铭铭希望知道总共有多少种不同的方案将所有珠子连成一个整体。由于答案可能很大,因此只需输出答案对1000000007取模的结果。
Input
标准输入。输入第一行包含一个正整数n,表示珠子的个数。接下来n行,每行包含n个非负整数,用空格隔开。这n行中,第i行第j个数为ci,j。
Output
标准输出。输出一行一个整数,为连接方案数对1000000007取模的结果。
Sample Input
0 2 3
2 0 4
3 4 0
Sample Output
HINT
对于100%的数据,n为正整数,所有的ci,j为非负整数且不超过1000000007。保证ci,j=cj,i。每组数据的n值如下表所示。
编号 1 2 3 4 5 6 7 8 9 10
n 8 9 9 10 11 12 13 14 15 16
题解:还记得n个点有标号的无向连通图个数怎么求吗?如果记得的话,此题就简单了。
用f[S]表示与1号点连通的点的状态为S的方案数。我们先与处理出g数组,$g[S]=\prod\limits_{u,v \in S} (c[u][v]+1)$,然后f[S]就等于g[S]减去S中某些点与1号点不连通的方案数。那么我们枚举此时与1号点连通的点的状态,其余的点与这个连通块均没有边相连,但是其余的点之间可以任意连边,所以有:
$f[S]=\sum\limits_{S' \subsetneq S}f[S']\times g[S - S' ]$
所以时间复杂度就是枚举子集的$O(3^n)$。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const ll P=1000000007;
int n,m;
int c[20][20];
int v[20],p[20],ref[1<<16],Log[1<<16];
ll f[1<<16],g[1<<16];
int main()
{
scanf("%d",&n);
int i,j,u;
for(i=0;i<n;i++) for(j=0;j<n;j++) scanf("%d",&c[i][j]);
for(i=0;i<n;i++) Log[1<<i]=i;
g[0]=1;
for(i=1;i<(1<<n);i++)
{
ll tmp=1;
for(u=Log[i&-i],j=i-(i&-i);j;j-=j&-j) tmp=tmp*(c[u][Log[j&-j]]+1)%P;
g[i]=g[i-(i&-i)]*tmp%P;
}
for(i=1;i<(1<<n);i++)
{
m=0;
for(j=i-(i&-i);j;j-=j&-j) p[m++]=j&-j;
for(j=1;j<(1<<m);j++)
{
ref[j]=ref[j-(j&-j)]|p[Log[j&-j]];
f[i]=(f[i]+f[i^ref[j]]*g[ref[j]])%P;
}
f[i]=(g[i]-f[i]+P)%P;
}
printf("%lld",f[(1<<n)-1]);
return 0;
}
【BZOJ2560】串珠子 状压DP+容斥的更多相关文章
- bzoj2560串珠子 状压dp+容斥(?)
2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 515 Solved: 348[Submit][Status][Discuss] ...
- bzoj2560 串珠子 状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2560 题解 大概是这类关于无向图的联通性计数的套路了. 一开始我想的是这样的,考虑容斥,那么就 ...
- BZOJ 2560: 串珠子 (状压DP+枚举子集补集+容斥)
(Noip提高组及以下),有意者请联系Lydsy2012@163.com,仅限教师及家长用户. 2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MB Su ...
- 【bzoj2560】串珠子 状压dp+容斥原理
题目描述 有 $n$ 个点,点 $i$ 和点 $j$ 之间可以连 $0\sim c_{i,j}$ 条无向边.求连成一张无向连通图的方案数模 $10^9+7$ .两个方案不同,当且仅当:存在点对 $(i ...
- codeforces 342D Xenia and Dominoes(状压dp+容斥)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...
- bzoj2669 [cqoi2012]局部极小值 状压DP+容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...
- 一本通 1783 矩阵填数 状压dp 容斥 计数
LINK:矩阵填数 刚看到题目的时候感觉是无从下手的. 可以看到有n<=2的点 两个矩形. 如果只有一个矩形 矩形外的方案数容易计算考虑 矩形内的 必须要存在x这个最大值 且所有值<=x. ...
- P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)
题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...
- HDU 5838 (状压DP+容斥)
Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...
随机推荐
- 04-树7. Search in a Binary Search Tree (25)
04-树7. Search in a Binary Search Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 ...
- 如何在IIS7或IIS7.5中导入导出站点及应用程序池. -摘自网络
为实现负载平衡,我们可能会使用多个WEB服务器,也就会需要给多个IIS配置同样的站点和应用程序池.那么我们需要一个一个的重新建吗?当然不用,我们只需要一些简单的命令就可以在IIS7(Windows S ...
- Animation.Sample用法介绍
无意中翻到这篇问答LINK,发现了Sample的用法 如果想让Animation在编辑器状态下预览,也可以用这个接口 当你想要直接获得动画的运行结果,而不是等帧数执行到这,这时候就得调用Sample: ...
- Atitit.各种 数据类型 ( 树形结构,表形数据 ) 的结构与存储数据库 attilax 总结
Atitit.各种 数据类型 ( 树形结构,表形数据 ) 的结构与存储数据库 attilax 总结 1. 数据结构( 树形结构,表形数据,对象结构 ) 1 2. 编程语言中对应的数据结构 jav ...
- $q服务的使用
1. 创建一个Service,去服务器读取数据: // $q 是内置服务,所以可以直接使用 ngApp.factory('UserInfo', ['$http', '$q', function ($h ...
- JSON 之GSON 解析
一. 谷歌GSON这个Java类库可以把Java对象转换成JSON,也可以把JSON字符串转换成一个相等的Java对象.Gson支持任意复杂Java对象包括没有源代码的对象. 二.Gson解析Json ...
- SQL Server 2008 允许远程链接 解决方法
用户在使用SQL Server 2008远程链接时,可能会弹出如下对话框: 在链接SQL服务器时发生网络链接错误或特定实例错误.SQL服务器不存在或者链接不成功.请验证用户名是否正确或SQL服务器是否 ...
- 基于HTML5 Canvas 实现的 Loading 效果
Sonic.js 是一个很小的 JavaScript 类,用于创建基于 HTML5 画布的加载图像.更强大的是 Sonic.js 还提供了基于现成的例子的创建工具,可以帮助你实现更多自定义的(Load ...
- RabbitMQ之发布订阅【译】
在上一节中我们创建了一个工作队列,最好的情况是工作队列能够把任务恰到好处的分配给每一个worker.这一节中我们将做一些完全不同的事情--将消息传递给每一个消费者,这种模式被称为发布/订阅. 为了说明 ...
- 利用WordPress用户密码算法规则修改用户密码
WordPress用户密码保存在wp_users数据表的user_pass字段,密码是通过Portable PHP password hashing framework类产生的, 密码的形式是随机且不 ...