题意:将1~2n个数按照顺时针排列好,用一条线将两个数字连接起来要求:线之间不能有交点,同一个点只允许被连一次。

最后问给出一个n,有多少种方式满足条件。

卡特兰数(列):

令h(0)=1,h(1)=1,catalan数满足递推式:h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)
例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2               h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5
另类递推式:        h(n)=h(n-1)*(4*n-2)/(n+1);
递推关系的解为: h(n)=C(2n,n)/(n+1) (n=0,1,2,...)
递推关系的另类解为:    h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,...)

一些方面的应用:

1. 括号化:矩阵连乘:P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n-1)种)
2.一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?
3.给定n个点求能组成的二叉树所有总数。
4. 凸多边形三角划分(任意两顶点之间的连线必能相交),求有多少中分割的方法(类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数) 
5. n层阶梯切割为n个矩形的切割方法总数

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = ;
const int moder = ;
int a[][];
void catalan()
//求卡特兰数,a[i][j]存储的是第i个逆序(高位在后)的卡特兰数(从0开始),且未对高位0进行处理
{
int i, j, len, carry, temp;
a[][] = ;
len = ;
for(i = ; i <= ; i++)
{
for(j = ; j < len; j++) //乘法
a[i][j] = a[i-][j]*(*(i-)+);
carry = ;
for(j = ; j < len; j++) //处理相乘结果
{
temp = a[i][j] + carry;
a[i][j] = temp % ;
carry = temp / ;
}
while(carry) //进位处理
{
a[i][len++] = carry % ;
carry /= ;
}
carry = ;
for(j = len-; j >= ; j--) //除法
{
temp = carry* + a[i][j];
a[i][j] = temp/(i+);
carry = temp%(i+);
}
}
}
int main()
{
int n;
catalan() ;
while(scanf("%d",&n) ,n != -)
{
int flag = ;
for(int i = ;i >= ;i--)//处理高位
{
if(a[n][i] != )
flag = ;
if(flag)
printf("%d",a[n][i]);
}
printf("\n");
}
return ;
}

————不是很懂

nyoj164——卡特兰数(待填坑)的更多相关文章

  1. 卡特兰数(Catalan)

    卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, ...

  2. bootstrap-table填坑之旅<一>认识bootstrap-table

    应公司需求,改版公司ERP的数据显示样式.由于前期开发的样式是bootstrap,所以选bootstrap-table理所当然(也是因为看了bootstrap-table官网的example功能强大, ...

  3. React Native填坑之旅--与Native通信之iOS篇

    终于开始新一篇的填坑之旅了.RN厉害的一个地方就是RN可以和Native组件通信.这个Native组件包括native的库和自定义视图,我们今天主要设计的内容是native库方面的只是.自定义视图的使 ...

  4. HDU-4828 卡特兰数+带模除法

    题意:给定2行n列的长方形,然后把1—2*n的数字填进方格内,保证每一行,每一列都是递增序列,求有几种放置方法,对1000000007取余: 思路:本来想用组合数找规律,但是找不出来,搜题解是卡特兰数 ...

  5. HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

  6. 卡特兰数(Catalan)简介

    Catalan序列是一个整数序列,其通项公式是 h(n)=C(2n,n)/(n+1) (n=0,1,2,...) 其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, ...

  7. catalan 数——卡特兰数(转)

    Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...

  8. Node填坑教程——前言

    Node是什么? Node 是一个服务器端 JavaScript 解释器,它将改变服务器应该如何工作的概念.它的目标是帮助程序员构建高度可伸缩的应用程序,编写能够处理数万条同时连接到一个(只有一个)物 ...

  9. CentOS7.3利用kubeadm安装kubernetes1.7.3完整版(官方文档填坑篇)

    安装前记: 近来容器对企业来说已经不是什么陌生的概念,Kubernetes作为Google开源的容器运行平台,受到了大家的热捧.搭建一套完整的kubernetes平台,也成为试用这套平台必须迈过的坎儿 ...

随机推荐

  1. yii2引入js和css

    assets/AppAsset.php public $css = [ 'css/site.css', 'css/font/css/font-awesome.min.css', 'css/doc.cs ...

  2. nginx php fastcgi安装

    CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上. CGI可以用任何一种语言编 ...

  3. 我与前端之间不得不说的三天两夜之jQuery

    前端基础之jquery 一 jQuery是什么? [1] jQuery由美国人John Resig创建,至今已吸引了来自世界各地的众多 javascript高手加入其team. [2] jQuery是 ...

  4. 给idea配置默认的maven

    一.配置Maven环境 1.下载apache-maven文件,选择自己需要的版本,地址: http://mirror.bit.edu.cn/apache/maven/maven-3/3.5.0/bin ...

  5. 关于Android RenderScript 的详细说明和一些实用文档

    http://www.cnblogs.com/TerryBlog/archive/2012/03/02/2377251.html RenderScript 是一种低级的高性能编程语言,用于3D渲染和处 ...

  6. 在Pycharm中配置Github

    Pycharm是当前进行python开发,尤其是Django开发最好的IDE.GitHub是程序员的圣地,几乎人人都在用. 本文假设你对pycharm和github都有一定的了解,并且希望在pycha ...

  7. 2017年4月16日 一周AnswerOpenCV佳作赏析

    2017年4月16日 一周AnswerOpenCV佳作赏析 1.HelloHow to smooth edge of text in binary image, based on threshold. ...

  8. 20145216史婧瑶《Java程序设计》第10周学习总结

    20145216 <Java程序设计>第10周学习总结 教材学习内容总结 网络编程 一.网络概述 网络编程就是两个或多个设备(程序)之间的数据交换. 识别网络上的每个设备:①IP地址②域名 ...

  9. 20145301 《Java程序设计》第九周学习总结

    20145301 <Java程序设计>第八周学习总结 教材学习内容总结 整合数据库 JDBC JDBC是用于执行SQL的解决方案,开发人员使用JDBC的标准接口,数据库厂商则对接口进行操作 ...

  10. Covariance and Contravariance (C#)

    Covariance and Contravariance (C#) https://docs.microsoft.com/en-us/dotnet/articles/csharp/programmi ...