【BZOJ 4361】 4361: isn (DP+树状数组+容斥)
4361: isn
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 218 Solved: 126Description
给出一个长度为n的序列A(A1,A2...AN)。如果序列A不是非降的,你必须从中删去一个数,这一操作,直到A非降为止。求有多少种不同的操作方案,答案模10^9+7。Input
第一行一个整数n。接下来一行n个整数,描述A。Output
一行一个整数,描述答案。
Sample Input
4
1 7 5 3Sample Output
18HINT
1<=N<=2000Source
【分析】
考虑倒着想。
你倒数第一步做之前还不是非降,做完之后就非降了,说明如果有一个上升序列,你加倒数第一个点时候不是上升序列了,前面的操作就可以任意了。
本来想保证这个的,但是发现放入DP里还有一个关于长度的阶乘,根本不行。
然后考虑容斥。
现在的问题是:倒数第一个点x,放入序列里面还是非降的,这个时候不应该计算。
即操作结束在更之前。把这些不合法的减掉就好了。
g[i]表示长度为i的上升序列个数
那么贡献就是$g[i]*(n-i)!-g[i+1]*(i+1)*(n-i-1)!$
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 2010
#define Mod 1000000007
// #define LL long long int f[Maxn][Maxn],g[Maxn],fac[Maxn],c[Maxn],a[Maxn]; struct node {int x,id;}t[Maxn];
bool cmp(node x,node y) {return x.x<y.x;} int mx;
void add(int x,int y)
{
for(int i=x;i<=mx;i+=i&(-i))
{
c[i]=(c[i]+y)%Mod;
}
} int get_sum(int x)
{
int ans=;
for(int i=x;i>=;i-=i&(-i))
ans=(ans+c[i])%Mod;
return ans;
} int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
int x;scanf("%d",&x);
t[i].x=x;t[i].id=i;
}
sort(t+,t++n,cmp);
mx=;a[t[].id]=;
for(int i=;i<=n;i++)
{
if(t[i].x!=t[i-].x) mx++;
a[t[i].id]=mx;
}
for(int i=;i<=n;i++) f[][i]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++) c[j]=;
for(int j=;j<=n;j++)
{
f[i][j]=get_sum(a[j]);
add(a[j],f[i-][j]);
}
}
for(int i=;i<=n;i++) for(int j=;j<=n;j++) g[i]=(g[i]+f[i][j])%Mod;
fac[]=;for(int i=;i<=n;i++) fac[i]=1LL*fac[i-]*i%Mod;
int ans=;
ans=(ans+g[n]);
for(int i=;i<n;i++)
{
ans=(ans+1LL*g[i]*fac[n-i]%Mod-1LL*fac[n-i-]*g[i+]%Mod*(i+)%Mod)%Mod;
}
ans=(ans+Mod)%Mod;
printf("%d\n",ans);
return ;
}
2017-04-20 17:01:57
【BZOJ 4361】 4361: isn (DP+树状数组+容斥)的更多相关文章
- BZOJ.4361.isn(DP 树状数组 容斥)
题目链接 长度为\(i\)的不降子序列个数是可以DP求的. 用\(f[i][j]\)表示长度为\(i\),结尾元素为\(a_j\)的不降子序列个数.转移为\(f[i][j]=\sum f[i-1][k ...
- bzoj4361 isn (dp+树状数组+容斥)
我们先设f[i][j]表示长度为i,以j结尾的不降子序列个数,$f[i][j]=\sum{f[i-1][k]},A[k]<=A[j],k<j$,用树状数组优化一下可以$O(n^2logn) ...
- 【BZOJ4361】isn 动态规划+树状数组+容斥
[BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...
- bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 793 Solved: 503[Submit][S ...
- 树形DP+树状数组 HDU 5877 Weak Pair
//树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...
- 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组
题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...
- 奶牛抗议 DP 树状数组
奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...
- BZOJ 4361 isn | DP 树状数组
链接 BZOJ 4361 题面 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案,答案模10^9+7. ...
- BZOJ 4361 isn 容斥+dp+树状数组
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361 题意概述: 给出一个长度为N的序列A(A1,A2...AN).如果序列A不是非降的 ...
随机推荐
- [php]apache虚拟主机配置
1.所谓虚拟主机的配置,即url与磁盘目录的绑定 2.在httpd.conf中查询Virtual host,发现有注释说明需要在conf/extra/httpd-vhosts.conf中进行配置. 3 ...
- react input 设置默认值
1.text类型 <input type="text" value={默认值} /> ,这种写法可以显示默认值,但不能对输入框进行编辑 正确写法: <input ...
- php常用函数——数学函数
php常用函数——数学函数
- WordPress404页面自定义
不知道大家是怎么设计404页面,个性的404可以为网站增色不少,wordpress设置404是在主题里面的404.php页面上,当然比如你用Apache.nginx等服务器,你可以自己建一个单页,内容 ...
- CentOS 6.5 安装 MongoDB
1. 配置 yum 新建 /etc/yum.repos.d/mongodb-org-3.4.repo 文件,使用以下配置:(适用于 MongoDB 3.0 以后版本) [mongodb-org-3.4 ...
- openjudge-NOI 2.6-1775 采药
题目链接:http://noi.openjudge.cn/ch0206/1775/ 题解: 很经典的01背包问题,设时间为t,价值为v 一维压缩,状态转移方程fj=max(fj,fj-ti+vi) # ...
- C/C++——[02] 运算符和表达式
C/C++中表示数据运算的符号称为“运算符”.运算符所用到的操作数个数,称为运算符的“目数”. C/C++语言的运算符有赋值运算符.算术运算符.逻辑运算符.位运算符等多类. 将变量.常量等用运算符连接 ...
- Codeforces 822D My pretty girl Noora(最小素因子的性质)
题目大意:一场选美比赛有N个人,可以分成N/x,每组x人.每组的比较次数为x(x-1)/2,f[N]为最后决出冠军所需的比较次数,可以通过改变x的值使f[N]改变.题目给出t,l,r(1 ≤ t &l ...
- 编译报错:LC.exe 已退出
- Button Bashing(搜索)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAx8AAAI2CAIAAAC+EqK4AAAgAElEQVR4nOydf0BT9f7/37fS423mWn