厄拉多塞筛法和普通方法求素数表(python实现)
厄拉多赛筛法(sieve of Eratosthenes):
想要得到一个不大于N的数所有素数,可以先找到不超过根号N的所有素数,设2 = p1 < p2 < ......<pk ≤√N,然后在2,3,4......N里面进行下面的操作:
留下p1 = 2,把p1的倍数全部划掉,
再留下p2 ,把p2 的倍数全部划掉,
继续这一过程,直到留下pk,把pk的倍数全部划掉,
最后留下来就是不超过N的全体素数。
举例:
N = 30 ,则取pk 为5,所以2到5的所有素数为2,3,5
第一遍 留下2,划去2的所有倍数
2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
第二遍 留下3,划去3的所有倍数
2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
第三遍 留下5,划去5的所有倍数
2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
剩余的数就是小于等于30的所有素数,即 2,3,5,7,11,13,17,19,23,29
算法实现:
算法思想来自于上面的介绍,但是并不是严格遵循上面的步骤:
def eladuosai(n):
l = list(range(1,n+1))
l[0] = 0
for i in range(2,n+1):
if l[i-1] != 0 :
for j in range(i*2,n+1,i):
l[j-1] = 0
result = [x for x in l if x != 0]
return result
求小于等于N的所有素数的普通算法:
def sushu(n):
result = []
for x in range(2,n+1):
for y in range(2,x):
if x % y == 0:
break
else:
result.append(x)
return result
时间对比,使用timeit模块测试两个方法的时间,当取n为10000的时候有如下结论:
t1 = timeit.Timer('sushu(10000)',setup='from __main__ import sushu')
t2 = timeit.Timer('eladuosai(10000)',setup='from __main__ import eladuosai')
print('厄拉多塞筛法的时间 ',t2.timeit(1))
print('普通函数的时间 : ',t1.timeit(1))
厄拉多塞筛法的时间 0.005523548190824634
普通方法的时间 : 0.7220688150193577
可以看出厄拉多塞筛法的运行时间比普通方法的时间要少很多。
厄拉多塞筛法和普通方法求素数表(python实现)的更多相关文章
- 埃氏筛法求素数&构造素数表求素数
埃氏筛法求素数和构造素数表求素数是一个道理. 首先,列出从2开始的所有自然数,构造一个序列: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1 ...
- hdu 4548 筛法求素数 打表
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4548 Problem Description 小明对数的研究比较热爱,一谈到数,脑子里就涌现出好多数的问题 ...
- Junit 注解 类加载器 .动态代理 jdbc 连接池 DButils 事务 Arraylist Linklist hashset 异常 哈希表的数据结构,存储过程 Map Object String Stringbufere File类 文件过滤器_原理分析 flush方法和close方法 序列号冲突问题
Junit 注解 3).其它注意事项: 1).@Test运行的方法,不能有形参: 2).@Test运行的方法,不能有返回值: 3).@Test运行的方法,不能是静态方法: 4).在一个类中,可以同时定 ...
- python中用filter求素数
#用filter求素数 #生成器,生成一个无限序列 def _odd_iter(): n=1 while True: n=n+2 yield n #筛选函数 def _not_divisible(n) ...
- python脚本5_求素数
#求素数 #素数:只能被1和它自己整除 n = int(input('Please input a number >>>')) flag = False for i in range ...
- hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10
题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...
- Algorithm --> 筛法求素数
一般的线性筛法 genPrime和genPrime2是筛法求素数的两种实现,一个思路,表示方法不同而已. #include<iostream> #include<math.h> ...
- 第二百五十八节,Tornado框架-逻辑处理get()方法和post()方法,初识模板语言
Tornado框架-逻辑处理get()方法和post()方法,初识模板语言 Tornado框架,逻辑处理里的get()方法,和post()方法 get()方法,处理get方式的请求post()方法,处 ...
- equals()方法和hashCode()方法详解
equals()方法和hashCode()方法详解 1. Object类中equals()方法源代码如下所示: /** * Object类中的equals()方法 */ public boolean ...
随机推荐
- 64_q2
qt3-3.3.8b-69.fc26.x86_64.rpm 13-Feb-2017 01:37 3591906 qt3-MySQL-3.3.8b-69.fc26.i686.rpm 13-Feb-201 ...
- 读书笔记 effective c++ Item 4 确保对象被使用前进行初始化
C++在对象的初始化上是变化无常的,例如看下面的例子: int x; 在一些上下文中,x保证会被初始化成0,在其他一些情况下却不能够保证.看下面的例子: class Point { int x,y; ...
- Spring mvc知识点总结——面试篇
一.MVC思想MVC(Model-View-Controller)三元组的概念:1.Model(模型):数据模型,提供要展示的数据,因此包含数据和行为,可以认为是领域模型或JavaBean组件(包含数 ...
- ~Delphi const 杂谈~
来自:http://www.cnblogs.com/tibetwolf/articles/1785744.html ------------------------------------------ ...
- 用tomcat配置https自签名证书,解决 ios7.1以上系统, 苹果inHouse发布
用tomcat配置https自签名证书,解决 ios7.1以上系统苹果inHouse发布不能下载安装的问题教程,话说,我其实最讨厌配置某某环境了,因为某一个小环节一旦出错,你的所有工作往往会功亏一篑, ...
- 想弄一弄tensorflow,先弄numpy
现在晚上凉快点了, 下班回家可以学会东东了.. 这次的书是一个印度人写的. 按着示例代码弄起先.. #!/usr/bin/env python # -*- coding: utf-8 -*- impo ...
- js封装插件【组件】三种方式,含es6新特性。
1.先来说一下我使用到的es6的Object.assign.在jq里合并对象用的是extend方法,用来处理默认参数和传入参数做合并.es6里为我们提供了Object.assign,但是ie下全部撂倒 ...
- loadrunner获取毫秒及字符串替换实现
loadrunner获取毫秒及字符串替换实现 今天做一个性能测试,参数化要求创建用户名不可以重复,想来想不没有什么好的办法来避免用户名字的重复.所以就想用时间+随机数来实现,但是实现中遇到一个问题. ...
- lr_get_attrib_string的使用
loadrunner controller 传递参数的一个方法: lr_get_attrib_string lang = lr_get_attrib_string("lang&quo ...
- Java 中如何计算两个字符串时间之间的时间差?(单位为分钟)
Java 中如何计算两个字符串时间之间的时间差?(单位为分钟) import java.text.DateFormat; import java.text.ParseException; import ...