BZOJ - 4318: OSU! (期望DP&Attention)
Description
Input
Output
Sample Input
0.5
0.5
0.5
Sample Output
HINT
思路:此类期望题都是单独算某一位的贡献,假设前一位的连续长度为g[i-1],那么很明显当前位的期望长度为 g[i]=(g[i-1]+1)*p[i];
则当前为的贡献是add=g[i]^3-g[i-1]^3=3*g[i]^2-3*g[i]+1。 这三部分分别算期望即可。
第一部分:3*g[i]^2,就是平方的期望(不仅仅是期望的平方那么简单),令期望的平方为数组g2,则3g2[i]=3*(g2[i-1]+2*g[i-1]+1)*p[i];
第二部分:-3*g[i],其期望=-3*(g[i-1]+1)*p[i]
第三部分: 1,其期望=p[i]
主要就是要注意期望的平方如何去算。
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
double p[maxn],g[maxn],g2[maxn],ans;
int main()
{
int N,i;
scanf("%d",&N);
for(i=;i<=N;i++) scanf("%lf",&p[i]);
for(i=;i<=N;i++){
g[i]=(g[i-]+)*p[i];
g2[i]=(g2[i-]+*g[i-]+)*p[i];
ans+=*g2[i]-*g[i]+p[i];
}
printf("%.1lf\n",ans);
return ;
}
BZOJ - 4318: OSU! (期望DP&Attention)的更多相关文章
- BZOJ 4318: OSU! 期望DP
4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...
- bzoj 4318 OSU! —— 期望DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...
- BZOJ 4318 OSU! ——期望DP
这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...
- 【BZOJ】4318: OSU! 期望DP
[题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...
- BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP
这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...
- BZOJ 4318 OSU! (概率DP)
题意 中文题面,难得解释了 题目传送门 分析 考虑到概率DPDPDP,显然可以想到f(i,j)f(i,j)f(i,j)表示到第iii位末尾有jjj个111的期望值.最后输出f(n+1,0)f(n+1, ...
- ●BZOJ 4318 OSU!
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4318题解: 期望dp 如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就 ...
- 【BZOJ4318】OSU! 期望DP
[BZOJ4318]OSU! Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1 ...
- bzoj 4318 OSU!
期望dp. 考虑问题的简化版:一个数列有n个数,每位有pi的概率为1,否则为0.求以每一位结尾的全为1的后缀长度的期望. 递推就好了. l1[i]=(l1[i-1]+1)*p[i]+0*(1-p[i] ...
随机推荐
- Bellman-Ford FORMCM
Bellman-Ford date: 2018/2/2 author:pprp theme:Dijstra 简介 单源最短路问题 要求: 图中不能出现负圈 思路: Bellman-Ford算法就是遍历 ...
- codeforces796E Exam Cheating
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 拉取代码过程中遇到的:post install error,please remove node_modules before retry!
这是在git → clone 之后,安装npm intall时出现的错误,完整错误提示如下: 解决: // 1.先删除node_modules这个文件 $ rm -rf node_modules/ / ...
- 【转】TCP那些事(上,下)
TCP是一个巨复杂的协议,因为他要解决很多问题,而这些问题又带出了很多子问题和阴暗面.所以学习TCP本身是个比较痛苦的过程,但对于学习的过程却能让人有很多收获.关于TCP这个协议的细节,我还是推荐你去 ...
- unity屏幕坐标转世界坐标结果为(0,0,0)
代码: wv转出来一直为(0,0,0),卡了好久,问别人说要转化的屏幕坐标Z不能为0 阿西吧!特此记录
- "".indexOf() "",replace(",","")的应用
自动化校验时,可能有些时候需要校验生成的值,如销售机会编号,每次生成时都是不一样的:所以我们需要提取出他们 assertTrue("SL17-001100".indexOf(dri ...
- 【转】正向代理vs反向代理
正向代理 正向代理:是一个位于客户端和原始服务器(origin server)之间的服务器,为了从原始服务器取得内容,客户端向代理发送一个请求并指定目标(原始服务器),然后代理向原始服务器转交请求并将 ...
- [嵌入式培训 笔记]-----Vim编辑器使用简介
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 第一讲小结 1. 光标在屏幕文本中的移动既 ...
- 【Error】 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
mysql 登录输入密码有时会碰到如题的错误. 错误描述: Error 1045 (28000): Access denied for user 'root'@'localhost' (using p ...
- angularJS---初识指令
angularJS 什么是angularJS AngularJS 诞生于2009年,由Misko Hevery 等人创建,后为Google所收购.是一款优秀的前端JS框架,已经被用于Google的多款 ...