题意:有一个$a^3$个小正方体组成的大正方体,其中有n个正方体会向上下左右前后六个方向中的一个发出光,正方体是透光的,被照亮的正方体有个美丽值$g_{i}$,给出正方体的相邻关系,问美丽值之和的最小值和最大值。

难点在如何建图。

先随便找个棱角,再随便建两条棱,然后一层一层铺下去。当铺到一个新的点时,肯定已经铺好了至少一个与它相邻的点,然后再暴力算出已知与当前点相邻的点给出的每个相邻的点的出现次数,然后没被填过且出现次数最多的那个点的编号,就是当前点的编号。

建完图跑个dfs就行了。

#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<iostream>
using namespace std;
#define ll long long
#define For(i,x,y) for (register int i=(x);i<=(y);i++)
#define Dow(i,x,y) for (register int i=(x);i>=(y);i--)
#define cross(i,k) for (register int i=first[k];i;i=last[i])
char c;
inline ll read(){
ll x=0;int ch=getchar(),f=1;
while (!isdigit(ch)&&(ch!='-')&&(ch!=EOF)) ch=getchar();
if (ch=='-'){f=-1;ch=getchar();}
while (isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
c=ch;return x*f;
}
const int N = 70*70*70+10;
const int dx[6]={1,-1,0,0,0,0};
const int dy[6]={0,0,1,-1,0,0};
const int dz[6]={0,0,0,0,1,-1};
struct node{
int x,y,z;
}l[11];
int n,rt,tot,g[N],next[N][7],a[75][75][75],vis[N],cnt[N];
ll Max,Min;
inline bool check(int x,int y,int z){return x>0&&x<=n&&y>0&&y<=n&&z>0&&z<=n;}
inline void dfs(int now,int x,int y,int z,int k){
a[x][y][z]=now,vis[now]=1;
if (z==n&&k==4||y==n&&k==2) return;
if (z==n-1&&k==4||y==n-1&&k==2){
For(i,1,next[now][0]){
int v=next[now][i];
if (!vis[v]&&next[v][0]==3){dfs(v,x+dx[k],y+dy[k],z+dz[k],k);break;}
}
return;
}
For(i,1,next[now][0]){
int v=next[now][i];
if (!vis[v]&&next[v][0]==4){dfs(v,x+dx[k],y+dy[k],z+dz[k],k);break;}
}
}
int x,y,z,Vis[75][75][75];
ll ans;
inline ll min(ll a,ll b){return a<b?a:b;}
inline ll max(ll a,ll b){return a>b?a:b;}
inline void dfs(int k){
if (k>tot){Max=max(Max,ans),Min=min(Min,ans);return;}
For(i,0,5){
x=l[k].x,y=l[k].y,z=l[k].z;
while (check(x+dx[i],y+dy[i],z+dz[i])){
x+=dx[i],y+=dy[i],z+=dz[i];
if (!Vis[x][y][z]) ans+=1ll*g[a[x][y][z]];Vis[x][y][z]++;
}
dfs(k+1);
x=l[k].x,y=l[k].y,z=l[k].z;
while (check(x+dx[i],y+dy[i],z+dz[i])){
x+=dx[i],y+=dy[i],z+=dz[i],Vis[x][y][z]--;
if (!Vis[x][y][z]) ans-=1ll*g[a[x][y][z]];
}
}
}
inline void Print(){
For(i,1,n){
For(j,1,n){
For(k,1,n) printf("%d ",a[i][j][k]);puts("");
}puts("");
}
}
int main(){
//freopen("P3342.in","r",stdin);
//freopen("P3342.out","w",stdout);
n=read();
For(i,1,n*n*n){
g[i]=read();
while (c==' ') next[i][++next[i][0]]=read();
}
For(i,1,n*n*n) if (next[i][0]==3){rt=i;break;}
dfs(rt,1,1,1,4),dfs(rt,1,1,1,2);
For(i,1,n) For(j,1,n) For(k,1,n){
if (a[i][j][k]) continue;
int Max=0,Max_id=0;
for (int d=0;d<6;d+=2){
int v=a[i-dx[d]][j-dy[d]][k-dz[d]];
For(nxt,1,next[v][0]){
cnt[next[v][nxt]]++;
if (cnt[next[v][nxt]]>Max&&!vis[next[v][nxt]]) Max=cnt[next[v][nxt]],Max_id=next[v][nxt];
}
}
a[i][j][k]=Max_id,vis[Max_id]=1;
for (int d=0;d<6;d+=2){
int v=a[i-dx[d]][j-dy[d]][k-dz[d]];
For(nxt,1,next[v][0]) cnt[next[v][nxt]]--;
}
}
For(i,1,n) For(j,1,n) For(k,1,n) if (!g[a[i][j][k]]) l[++tot]=(node){i,j,k};
Max=(ll)-1e18,Min=-Max;
dfs(1);
printf("%lld %lld",Min,Max);
}

BZOJ3619 [Zjoi2014]璀灿光华 构造+dfs的更多相关文章

  1. BZOJ3619 : [Zjoi2014]璀灿光华

    终于把省选时的遗憾补上了… 对于构造立方体: 首先BFS构出底层,然后再逐层构造立方体 对于计算: $O(n^6)$爆搜即可. #include<cstdio> #include<c ...

  2. 题解:[ZJOI2014]璀灿光华

    原题链接 OJ 题号 洛谷 3342 loj 2203 bzoj 3619 题目描述 金先生有一个女朋友没名字.她勤劳勇敢.智慧善良.金先生很喜欢她.为此,金先生用\(a^3\)块\(1 \times ...

  3. 「ZJOI2014」璀灿光华

    「ZJOI2014」璀灿光华 实际上,可以不用建水晶立方体... 因为,发光水晶的方向都要枚举一遍. 只需知道发光水晶每个方向有哪些水晶就可以了. 对于一个发光水晶,将它连接的水晶标号. 从该水晶bf ...

  4. UVa 12118 nspector's Dilemma (构造+DFS+欧拉回路)

    题意:给定n个点,e条边和每条边的长度t,每两个点之间都有路相连,让你求一条最短的路经过这e条边. 析:刚开始想到要判连通,然后把相应的几块加起来,但是,第二个样例就不过,后来一想,那么有欧拉回路的还 ...

  5. Codeforces 906B. Seating of Students(构造+DFS)

    行和列>4的可以直接构造,只要交叉着放就好了,比如1 3 5 2 4和2 4 1 3 5,每一行和下一行用不同的方法就能保证没有邻居. 其他的可以用爆搜,每次暴力和后面的一个编号交换并判断可行性 ...

  6. 7.9 NOI模拟赛 A.图 构造 dfs树 二分图

    啥都想不出来的我是不是废了/dk 这道题考的主要是构造 而我想的主要是乱搞. 一个很假很假的做法:直接暴力4种颜色染色 我也不知道对不对.. 不过成功的话一定是对的. 然后考虑奇环的问题 一个很假很假 ...

  7. 【构造+DFS】2017多校训练三 HDU 6060 RXD and dividing

    acm.hdu.edu.cn/showproblem.php?pid=6060 [题意] 给定一棵以1为根的树,把这颗树除1以外的结点划分为k个集合(可以有空集),把1加入划分后的集合 每个集合的结点 ...

  8. 【uva 1610】Party Games(算法效率--构造 dfs)

    题意:有一个N个字符串(N≤1000,N为偶数)的集合,要求找一个长度最短的字符串(可不在集合内)S,使得集合中恰好一半的串小于等于S,另一半大于S.如果有多解,要求输出字典序最小的解. 解法:本来我 ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. Shader -> Photoshop图层混合模式计算公式大全

    Photoshop图层混合模式计算公式大全 混合模式可以将两个图层的色彩值紧密结合在一起,从而创造出大量的效果,在这些效果的背后实际是一些简单的数学公式在起作用. 下面是photoshop cs2中所 ...

  2. [\u4e00-\u9fa5] //匹配中文字符

     [\u4e00-\u9fa5] //匹配中文字符 ^[1-9]\d*$    //匹配正整数^[A-Za-z]+$   //匹配由26个英文字母组成的字符串^[A-Z]+$      //匹配由26 ...

  3. SQLite3 C/C++ 开发接口简介(API函数)

    from : http://www.sqlite.com.cn/MySqlite/5/251.Html 1.0 总览 SQLite3是SQLite一个全新的版本,它虽然是在SQLite 2.8.13的 ...

  4. Python基础之杂货铺

    字符串格式化 Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-310 ...

  5. 码源中国.gitignore忽略文件配置

    码源中国.gitignore忽略文件配置 ## Ignore Visual Studio temporary files, build results, and ## files generated ...

  6. css预处理scss环境配置

    css 预处理器 CSS 预处理器用一种专门的编程语言,进行 Web css编码,然后再编译成正常的 CSS 文件,以供项目使用:说简单点就是在某个环境下写css 可以写变量.表达式.嵌套等,在通过该 ...

  7. ansible报错AttributeError: module 'urllib.request' has no attribute 'HTTPSHandler'

    报错内容: TASK [activemq : extract activemq tarball] *************************************************** ...

  8. word2vec参数

    架构:skip-gram(慢.对罕见字有利)vs CBOW(快) ·         训练算法:分层softmax(对罕见字有利)vs 负采样(对常见词和低纬向量有利) 负例采样准确率提高,速度会慢, ...

  9. C# String.Format用法和格式说明

    1.格式化货币(跟系统的环境有关,中文系统默认格式化人民币,英文系统格式化美元) string.Format("{0:C}",0.2) 结果为:¥0.20 (英文操作系统结果:$0 ...

  10. poj 2420(模拟退火)

    A Star not a Tree? Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6066   Accepted: 285 ...