0x00 平台环境

OS: CentOS-6.5-x86_64

JDK: jdk-8u111-linux-x64

Hadoop: hadoop-2.5.2

0x01 操作系统基本设置

1.1 网络配置

修改主机名

//查看当前主机名
# hostname
//修改当前主机名
vim /etc/sysconfig/network
NETWORKING 是否利用网络
GATEWAY 默认网关
IPGATEWAYDEV 默认网关的接口名
HOSTNAME 主机名
DOMAIN 域名

配置静态IP

# vim /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE 接口名(设备,网卡)
BOOTPROTO IP的配置方法(static:固定IP, dhcpHCP, none:手动)
HWADDR MAC地址
ONBOOT 系统启动的时候网络接口是否有效(yes/no)
TYPE 网络类型(通常是Ethemet)
NETMASK 网络掩码
IPADDR IP地址
IPV6INIT IPV6是否有效(yes/no)
GATEWAY 默认网关IP地址
DNS1
DNS2

配置hosts文件

# vim /etc/hosts
192.168.1.2 master
192.168.1.3 slave1
192.168.1.4 slave2

1.2 关闭防火墙和SELinux

关闭防火墙

//临时关闭
# service iptables stop
//永久关闭
# chkconfig iptables off
# service ip6tables stop
# chkconfig ip6tables off

关闭SELinux

# vim /etc/sysconfig/selinux
SELINUX=enforcing -> SELINUX=disable

接着执行如下命令

# setenforce 0
# getenforce

1.3 建立一般用户hadoop

//新增用户
# useradd hadoop
//设置密码
# passwd hadoop
//根据提示输入两次密码

0x02 配置master免密钥登录slave

2.1 生成密钥

$ su hadoop
$ ssh-keygen -t rsa

2.2 创建授权密钥

msaterid_rsa.pub追加到授权key中(只需要将master节点的公钥追加到authorized_keys

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

更改authorized_keys的权限,也需要分别在slave节点操作

chomd 600 authorized_keys

2.3 将authorized_keys复制到所有slave节点

$ scp ~/.ssh/authorized_keys hadoop@192.168.1.11:~/.ssh/
$ scp ~/.ssh/authorized_keys hadoop@192.168.1.12:~/.ssh/

2.4 测试master免密钥登陆所有slave节点

$ ssh slave1
$ ssh slave2

0x03 Hadoop 安装

3.1 解压

$ tar -zvxf hadoop-2.5.2.tar.gz  -C /home/hadoop/hadoop
$ chown -R hadoop:hadoop /home/hadoop

3.2 配置环境变量(在尾部追加

# vim  /etc/profile
# set hadoop environment
export HADOOP_HOME=/home/hadoop/hadoop
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_YARN_HOME=$HADOOP_HOME
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export CLASSPATH=.:$JAVA_HOME/lib:$HADOOP_HOME/lib:$CLASSPATH
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

使环境变量立即生效注意在哪个用户下执行该命令,环境变量在那个用户下生效

# su hadoop
$ source /etc/profile

0x04 配置hadoop文件

4.1 core-site.xml

注意:hadoop_tmp文件夹一定要配置在存储空间比较大的位置,否则会报错

可能出现的问题:

(1)Unhealthy Nodes 问题

http://blog.csdn.net/korder/article/details/46866271

(2)local-dirs turned bad

(3)Hadoop运行任务时一直卡在: INFO mapreduce.Job: Running job

http://www.bkjia.com/yjs/1030530.html

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://master:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/home/hadoop/hadoop/hadoop_tmp</value>
<!--需要自己创建hadoop_tmp文件夹-->
</property>
<property>
<name>io.file.buffer.size</name>
<value>131072</value>
</property>
<property>
<name>hbase.rootdir</name>
<value>hdfs://master:9000/hbase</value>
</property>
</configuration>

4.2 hdfs-site.xml

<configuration>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>master:9001</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/home/hadoop/hadoop/dfs/name</value>
<description>namenode上存储hdfs元数据</description>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/home/hadoop/hadoop/dfs/data</value>
<description>datanode上数据块物理存储位置</description>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>

注:访问namenode的 webhdfs 使用50070端口,访问datanode的webhdfs使用50075端口。要想不区分端口,直接使用namenode的IP和端口进行所有webhdfs操作,就需要在所有

datanode上都设置hdfs-site.xml中dfs.webhdfs.enabled为true。

4.3 mapred-site.xml

<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master:19888</value>
</property>
<property>
<name>mapreduce.jobtracker.http.address</name>
<value>NameNode:50030</value>
</property>
</configuration>

jobhistory是Hadoop自带一个历史服务器,记录Mapreduce历史作业。默认情况下,jobhistory没有启动,可用以下命令启动:

$ sbin/mr-jobhistory-daemon.sh start historyserver

4.4 yarn-site.xml

<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>master:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>master:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master:8031</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>master:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>master:8088</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>master:2181,slave1L2181,slave2:2181</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
</configuration>

4.5 修改slaves文件,添加datanode节点hostname到slaves文件中

slave1
slave2

4.6 hadoop-env.sh

vim /home/hadoop/hadoop/etc/hadoop/hadoop-env.sh
export JAVA_HOME=${JAVA_HOME} -> export JAVA_HOME=/usr/java
export HADOOP_COMMON_LIB_NATIVE_DIR=/home/hadoop/hadoop/lib/native

4.7 复制

最后,将整个/home/hadoop/hadoop文件夹及其子文件夹使用scp复制到slave相同目录中:

$ scp -r /home/hadoop/hadoop hadoop@slave1:/home/hadoop/
$ scp -r /home/hadoop/hadoop hadoop@slave2:/home/hadoop/

0x05 运行Hadoop

5.1 格式化(*确保配置文件中各文件夹已经创建

$ hdfs namenode –format

成功后显示信息

************************************************************/
17/09/09 04:27:03 INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT]
17/09/09 04:27:03 INFO namenode.NameNode: createNameNode [-format]
17/09/09 04:27:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Formatting using clusterid: CID-243cecfb-c003-4213-8112-b5f227616e39
17/09/09 04:27:04 INFO namenode.FSNamesystem: No KeyProvider found.
17/09/09 04:27:04 INFO namenode.FSNamesystem: fsLock is fair:true
17/09/09 04:27:04 INFO blockmanagement.DatanodeManager: dfs.block.invalidate.limit=1000
17/09/09 04:27:04 INFO blockmanagement.DatanodeManager: dfs.namenode.datanode.registration.ip-hostname-check=true
17/09/09 04:27:04 INFO blockmanagement.BlockManager: dfs.namenode.startup.delay.block.deletion.sec is set to 000:00:00:00.000
17/09/09 04:27:04 INFO blockmanagement.BlockManager: The block deletion will start around 2017 Sep 09 04:27:04
17/09/09 04:27:04 INFO util.GSet: Computing capacity for map BlocksMap
17/09/09 04:27:04 INFO util.GSet: VM type = 64-bit
17/09/09 04:27:04 INFO util.GSet: 2.0% max memory 889 MB = 17.8 MB
17/09/09 04:27:04 INFO util.GSet: capacity = 2^21 = 2097152 entries
17/09/09 04:27:04 INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false
17/09/09 04:27:04 INFO blockmanagement.BlockManager: defaultReplication = 2
17/09/09 04:27:04 INFO blockmanagement.BlockManager: maxReplication = 512
17/09/09 04:27:04 INFO blockmanagement.BlockManager: minReplication = 1
17/09/09 04:27:04 INFO blockmanagement.BlockManager: maxReplicationStreams = 2
17/09/09 04:27:04 INFO blockmanagement.BlockManager: replicationRecheckInterval = 3000
17/09/09 04:27:04 INFO blockmanagement.BlockManager: encryptDataTransfer = false
17/09/09 04:27:04 INFO blockmanagement.BlockManager: maxNumBlocksToLog = 1000
17/09/09 04:27:04 INFO namenode.FSNamesystem: fsOwner = hadoop (auth:SIMPLE)
17/09/09 04:27:04 INFO namenode.FSNamesystem: supergroup = supergroup
17/09/09 04:27:04 INFO namenode.FSNamesystem: isPermissionEnabled = false
17/09/09 04:27:04 INFO namenode.FSNamesystem: HA Enabled: false
17/09/09 04:27:04 INFO namenode.FSNamesystem: Append Enabled: true
17/09/09 04:27:05 INFO util.GSet: Computing capacity for map INodeMap
17/09/09 04:27:05 INFO util.GSet: VM type = 64-bit
17/09/09 04:27:05 INFO util.GSet: 1.0% max memory 889 MB = 8.9 MB
17/09/09 04:27:05 INFO util.GSet: capacity = 2^20 = 1048576 entries
17/09/09 04:27:05 INFO namenode.NameNode: Caching file names occuring more than 10 times
17/09/09 04:27:05 INFO util.GSet: Computing capacity for map cachedBlocks
17/09/09 04:27:05 INFO util.GSet: VM type = 64-bit
17/09/09 04:27:05 INFO util.GSet: 0.25% max memory 889 MB = 2.2 MB
17/09/09 04:27:05 INFO util.GSet: capacity = 2^18 = 262144 entries
17/09/09 04:27:05 INFO namenode.FSNamesystem: dfs.namenode.safemode.threshold-pct = 0.9990000128746033
17/09/09 04:27:05 INFO namenode.FSNamesystem: dfs.namenode.safemode.min.datanodes = 0
17/09/09 04:27:05 INFO namenode.FSNamesystem: dfs.namenode.safemode.extension = 30000
17/09/09 04:27:05 INFO namenode.FSNamesystem: Retry cache on namenode is enabled
17/09/09 04:27:05 INFO namenode.FSNamesystem: Retry cache will use 0.03 of total heap and retry cache entry expiry time is 600000 millis
17/09/09 04:27:05 INFO util.GSet: Computing capacity for map NameNodeRetryCache
17/09/09 04:27:05 INFO util.GSet: VM type = 64-bit
17/09/09 04:27:05 INFO util.GSet: 0.029999999329447746% max memory 889 MB = 273.1 KB
17/09/09 04:27:05 INFO util.GSet: capacity = 2^15 = 32768 entries
17/09/09 04:27:05 INFO namenode.NNConf: ACLs enabled? false
17/09/09 04:27:05 INFO namenode.NNConf: XAttrs enabled? true
17/09/09 04:27:05 INFO namenode.NNConf: Maximum size of an xattr: 16384
17/09/09 04:27:05 INFO namenode.FSImage: Allocated new BlockPoolId: BP-706635769-192.168.32.100-1504902425219
17/09/09 04:27:05 INFO common.Storage: Storage directory /home/hadoop/cloud/hadoop/dfs/name has been successfully formatted.
17/09/09 04:27:05 INFO namenode.FSImageFormatProtobuf: Saving image file /home/hadoop/cloud/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 using no compression
17/09/09 04:27:05 INFO namenode.FSImageFormatProtobuf: Image file /home/hadoop/cloud/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 of size 323 bytes saved in 0 seconds.
17/09/09 04:27:05 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
17/09/09 04:27:05 INFO util.ExitUtil: Exiting with status 0
17/09/09 04:27:05 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at master/192.168.32.100
************************************************************/

5.2 启动Hadoop

$ start-dfs.sh
$ start-yarn.sh
//可以用一条命令来代替:
$ start-all.sh

5.3 使用jps命令查看进程

(1) master主节点进程:

8193 Jps
7943 ResourceManager
7624 NameNode
7802 SecondaryNameNode

(2) slave数据节点进程:

1413 DataNode
1512 NodeManager
1626 Jps

5.4 通过浏览器查看集群运行状态

概览:http://172.16.1.156:50070/

集群:http://172.16.1.156:8088/

JobHistory:http://172.16.1.156:19888

jobhistory是Hadoop自带一个历史服务器,记录Mapreduce历史作业。默认情况下,jobhistory没有启动,可用以下命令启动:

$ sbin/mr-jobhistory-daemon.sh start historyserver

0x06 测试Hadoop(运行wordcount)

6.1 建立文件

$ vi wordcount.txt
hello you
hello me
hello everyone

6.2 在HDFS上建立目录

$ hadoop fs -mkdir /data/wordcount
$ hadoop fs –mkdir /output/

目录/data/wordcount用来存放Hadoop自带WordCount例子的数据文件,运行这个MapReduce任务结果输出到/output/wordcount目录中。

6.3 上传文件

$ hadoop fs -put wordcount.txt/data/wordcount/

6.4 执行wordcount程序

$ hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.1.jar wordcount /data/wordcount /output/wordcount/

6.5 查看结果

# hadoop fs -text /output/wordcount/part-r-00000
everyone 1
hello 3
me 1
you 1

0x07 搭建中遇到的问题

7.1 在配置环境变量过程可能遇到输入命令ls命令不能识别问题:ls -bash: ls: command not found

原因:在设置环境变量时,编辑profile文件没有写正确,将export PATH=\(JAVA_HOME/bin:\)PATH中冒号误写成分号 ,导致在命令行下ls等命令不能够识别。解决方案:export PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin

7.2 nodemanager死掉

在主机上启动hadoop集群,然后使用jps查看主从机上进程状态,能够看到主机上的resourcemanager和各个从机上的nodemanager,但是过一段时间后,从机上的nodemanager就没有了,主机上的resourcemanager还在。

原因是防火墙处于开启状态:

注:nodemanager启动后要通过心跳机制定期与RM通信,否则RM会认为NM死掉,会停止NM服务。

7.3 SSH连接慢的问题

sshd服务中设置了UseDNS yes,当配置的DNS服务器出现无法访问的问题,可能会造成连接该服务器需要等待10到30秒的时间。由于使用UseDNS,sshd服务器会反向解析连接客户端的ip,即使是在局域网中也会。

当平时连接都是很快,突然变的异常的慢,可能是sshd服务的服务器上配置的DNS失效,例如DNS配置的是外网的,而此时外面故障断开。终极解决方案是不要使用UseDNS,在配置文件/etc/sshd_config(有些linux发行版在/etc/ssh/sshd_config)中找到UseDNS 设置其值为 no,如果前面有#号,需要去掉,重启sshd服务器即可。

vim /etc/ssh/sshd_config
UseDNS no

7.4 重新格式化HDFS文件系统后报错

FATAL org.apache.hadoop.hdfs.server.namenode.NameNode: Exception in namenode join java.io.IOException: There appears to be a gap in the edit log. We expected txid 176531929, but got txid 176533587.

原因:是因为namenode和datenode数据不一致引起的

解决办法:删除master slave节点dataname文件夹下的内容,即可解决。缺点是数据不可恢复。

另一种解决办法:http://blog.csdn.net/amber_amber/article/details/46896719

参考链接:

https://yq.aliyun.com/articles/36274

https://taoistwar.gitbooks.io/spark-operationand-maintenance-management/content/spark_relate_software/hadoop_2x_install.html

7.5 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform… using builtin-java classes where applicable

I assume you're running Hadoop on 64bit CentOS. The reason you saw that warning is the native Hadoop library $HADOOP_HOME/lib/native/libhadoop.so.1.0.0 was actually compiled on 32 bit.Anyway, it's just a warning, and won't impact Hadoop's functionalities.

http://stackoverflow.com/questions/19943766/hadoop-unable-to-load-native-hadoop-library-for-your-platform-warning

(1)简便的解决方法是:(后来我发现这两步都要做)

下载64位的库,解压到hadoop-2.7.0/lib/native/,不在有警告

下载地址:http://dl.bintray.com/sequenceiq/sequenceiq-bin/

(2)修改hadoop-env.sh

export HADOOP_OPTS="$HADOOP_OPTS -Djava.library.path=/usr/local/hadoop/lib/native"
export HADOOP_COMMON_LIB_NATIVE_DIR="/usr/local/hadoop/lib/native/"

7.6 hadoop提交jar包卡住不会往下执行的解决方案,卡在此处:

INFO mapreduce.Job: Running job: job_1474517485267_0001

这里我们在集群的yarn-site.xml中添加配置

<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>4096</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.1</value>
</property>

重新启动集群,运行jar包即可

但是,并没有解决我的问题,我的问题是Unhealthy Nodes,最后才发现!!可能不添加上述配置原来配置也是对的。

http://www.voidcn.com/blog/gamer_gyt/article/p-6209546.html

2017年1月22日, 星期日

  • 2017-06-02 更新

    增加操作系统基本设置部分

    修改部分配置文件内容

Hadoop2.5.2 安装部署的更多相关文章

  1. 【原创 Hadoop&Spark 动手实践 1】Hadoop2.7.3 安装部署实践

    目录: 第一部分:操作系统准备工作: 1. 安装部署CentOS7.3 1611 2. CentOS7软件安装(net-tools, wget, vim等) 3. 更新CentOS7的Yum源,更新软 ...

  2. hadoop2 Ubuntu 下安装部署

    搭建Hadoop环境( 我以hadoop 2.7.3 为例, 系统为 64bit Ubuntu14.04 ) hadoop 2.7.3 官网下载 , 选择自己要安装的版本.注意每个版本对应两个下载选项 ...

  3. hadoop2.5.2安装部署

    0x00 说明 此处已经省略基本配置步骤参考Hadoop1.0.3环境搭建流程,省略主要步骤有: 建立一般用户 关闭防火墙和SELinux 网络配置 0x01 配置master免密钥登录slave 生 ...

  4. hadoop入门(3)——hadoop2.0理论基础:安装部署方法

    一.hadoop2.0安装部署流程         1.自动安装部署:Ambari.Minos(小米).Cloudera Manager(收费)         2.使用RPM包安装部署:Apache ...

  5. CentOS下SparkR安装部署:hadoop2.7.3+spark2.0.0+scale2.11.8+hive2.1.0

    注:之前本人写了一篇SparkR的安装部署文章:SparkR安装部署及数据分析实例,当时SparkR项目还没正式入主Spark,需要自己下载SparkR安装包,但现在spark已经支持R接口,so更新 ...

  6. spark2.10安装部署(集成hadoop2.7+)

    这里默认你的hadoop是已经安装好的,master是node1,slaver是node2-3,hdfs启动在node1,yarn启动在node2,如果没安装好hadoop可以看我前面的文章 因为这里 ...

  7. Hadoop2.2集群安装配置-Spark集群安装部署

    配置安装Hadoop2.2.0 部署spark 1.0的流程 一.环境描写叙述 本实验在一台Windows7-64下安装Vmware.在Vmware里安装两虚拟机分别例如以下 主机名spark1(19 ...

  8. Hadoop2.7.3+Hbase-1.2.6+spark2.1.2完全分布式安装部署

    https://www.cnblogs.com/lzxlfly/p/7221890.html 总的下载地址:      http://mirror.bit.edu.cn/apache/ hadoop下 ...

  9. Apache Hadoop2.x 边安装边入门

    完整PDF版本:<Apache Hadoop2.x边安装边入门> 目录 第一部分:Linux环境安装 第一步.配置Vmware NAT网络 一. Vmware网络模式介绍 二. NAT模式 ...

随机推荐

  1. Python3 字典 pop() 方法

     Python3 字典 描述 Python 字典 pop() 方法删除字典给定键 key 所对应的值,返回值为被删除的值.key值必须给出. 否则,返回default值. 语法 pop()方法语法: ...

  2. 课程14:get和post是神马

    http://www.codeschool.cn/lesson/14.html get和post是神马? get和post是http中两种最常用到的请求类型 简单理解get请求 get请求多用于获取信 ...

  3. Codeforces Round #358 (Div. 2) A B C 水 水 dfs序+dp

    A. Alyona and Numbers time limit per test 1 second memory limit per test 256 megabytes input standar ...

  4. [树莓派]wifi在面板看不到,但是可以scan到的解决方案

    突然遇到一个问题,发现在wifi面板中找不到WiFi,但是运行scan命令可以发现WiFi,多方查找资料终于找到了一个解决方案: 运行如下命令: sudo apt-get install wicd   ...

  5. 手脱PEncrypt 4.0

    1.载入PEID PEncrypt 4.0 Gamma / 4.0 Phi -> junkcode [Overlay] 2.载入OD,没什么头绪,忽略所有异常,用最后一次异常法shift+F9运 ...

  6. mysql主从同步碰到的问题

    一.mysql 安装https://www.cnblogs.com/jxrichar/p/9248480.html二.主从配置参考https://www.cnblogs.com/superfat/p/ ...

  7. 2017 济南精英班 Day1

    不管怎么掰都是n*m-1 #include<cstdio> using namespace std; int main() { freopen("bpmp.in",&q ...

  8. Codeforces 807 B T-Shirt Hunt

    B. T-Shirt Hunt http://codeforces.com/problemset/problem/807/B time limit per test 2 seconds memory ...

  9. PHP扩展开发--01.编写一个helloWorld扩展

    为什么要用C扩展 C是静态编译的,执行效率比PHP代码高很多.同样的运算代码,使用C来开发,性能会比PHP要提升数百倍. 另外C扩展是在进程启动时加载的,PHP代码只能操作Request生命周期的数据 ...

  10. hadoop之存储篇

    ---持续更新中,可留言讨论--- --题目导航见页面左上角的悬浮框#目录导航#-- 一.目录: 集群规划 HDFS HA 冒烟测试 功能特性 二.集群规划: 负载类型 容量规划 可扩展性 角色分离 ...