前言:

如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了。

谈到LDA,就不得不谈谈PCA,PCA是一个和LDA非常相关的算法,从推导、求解、到算法最终的结果,都有着相当的相似。

本次的内容主要是以推导数学公式为主,都是从算法的物理意义出发,然后一步一步最终推导到最终的式子,LDA和PCA最终的表现都是解一个矩阵特征值的问题,但是理解了如何推导,才能更深刻的理解其中的含义。本次内容要求读者有一些基本的线性代数基础,比如说特征值、特征向量的概念,空间投影,点乘等的一些基本知识等。除此之外的其他公式、我都尽量讲得更简单清楚。

LDA:

LDA的全称是Linear Discriminant Analysis(线性判别分析),是一种supervised learning。有些资料上也称为是Fisher’s Linear Discriminant,因为它被Ronald Fisher发明自1936年,Discriminant这次词我个人的理解是,一个模型,不需要去通过概率的方法来训练、预测数据,比如说各种贝叶斯方法,就需要获取数据的先验、后验概率等等。LDA是在目前机器学习、数据挖掘领域经典且热门的一个算法,据我所知,百度的商务搜索部里面就用了不少这方面的算法。

LDA的原理是,将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别的点,将会在投影后的空间中更接近。要说明白LDA,首先得弄明白线性分类器(Linear Classifier):因为LDA是一种线性分类器

对于K-分类的一个分类问题,会有K个线性函数:

     当满足条件:对于所有的j,都有Yk > Yj,的时候,我们就说x属于类别k。对于每一个分类,都有一个公式去算一个分值,在所有的公式得到的分值中,找一个最大的,就是所属的分类了。

上式实际上就是一种投影,是将一个高维的点投影到一条高维的直线上,LDA最终的目标是,给出一个标注了类别的数据集,投影到了一条直线之后,能够使得点尽量的按类别区分开,当k=2即二分类问题的时候,如下图所示:

红色的方形的点为0类的原始点、蓝色的方形点为1类的原始点,经过原点的那条线就是投影的直线,从图上可以清楚的看到,红色的点和蓝色的点被原点明显的分开了,这个数据只是随便画的,如果在高维的情况下,看起来会更好一点。下面我来推导一下二分类LDA问题的公式:

假设用来区分二分类的直线(即为投影函数)为:

LDA分类的一个目标是使得不同类别之间的距离越远越好,同一类别之中的距离越近越好,所以我们需要定义几个关键的值。

类别i的原始中心点为:(Di表示属于类别i的点)

类别i投影后的中心点为:

衡量类别i投影后,类别点之间的分散程度(方差)为:

最终我们可以得到一个下面的公式,表示LDA投影到w后的损失函数

这个函数称为Fisher准则函数。

我们分类的目标是,使得类别内的点距离越近越好(集中),类别间的点越远越好。分母表示每一个类别内的方差之和,分母(方差)越小表示一个类别内的点越聚集,分子为两个类别各自的中心点的距离的平方,分子越大表示不同类别间的点越越远。我们最大化J(w)就可以求出最优的w了。想要求出最优的w,可以使用拉格朗日乘子法,但是现在我们得到的J(w)里面,w是不能被单独提出来的,我们就得想办法将w单独提出来。

我们定义一个投影前的各类别分散程度的矩阵,这个矩阵看起来有一点麻烦,其实意思是,如果某一个分类的输入点集Di里面的点距离这个分类的中心店mi越近,则Si里面元素的值就越小,如果分类的点都紧紧地围绕着mi,则Si里面的元素值越更接近0.

带入Si,将J(w)分母化为:

同样的将J(w)分子化为:

这样损失函数可以化成下面的形式:

这样就可以用最喜欢的拉格朗日乘子法了,但是还有一个问题,如果分子、分母是都可以取任意值的,那就会使得有无穷解,我们将分母限制为长度为1,并作为拉格朗日乘子法的限制条件(这是用拉格朗日乘子法一个很重要的技巧,在下面将说的PCA里面也会用到,如果忘记了,请复习一下高数),带入得到:

这样的式子就是一个求特征值的问题了。

对于N(N>2)分类的问题,我就直接写出下面的结论了:

这同样是一个求特征值的问题,我们求出的第i大的特征向量,就是对应的Wi了。

这里想多谈谈特征值,特征值在纯数学、量子力学、固体力学、计算机等等领域都有广泛的应用,特征值表示的是矩阵的性质,当我们取到矩阵的前N个最大的特征值的时候,我们可以说提取到的矩阵主要的成分(这个和之后的PCA相关,但是不是完全一样的概念)。在机器学习领域,不少的地方都要用到特征值的计算,比如说图像识别、pagerank、LDA、还有之后将会提到的PCA等等。

下图是图像识别中广泛用到的特征脸(eigen face),提取出特征脸有两个目的,首先是为了压缩数据,对于一张图片,只需要保存其最重要的部分就是了,然后是为了使得程序更容易处理,在提取主要特征的时候,很多的噪声都被过滤掉了。跟下面将谈到的PCA的作用非常相关。

特征值的求法有很多,求一个D * D的矩阵的时间复杂度是O(D^3), 也有一些求Top M的方法,比如说power method,它的时间复杂度是O(D^2 * M), 总体来说,求特征值是一个很费时间的操作,如果是单机环境下,是很局限的。

  Fisher LDA对数据的分布做了一些很强的假设,比如每个类的数据都是高斯分布,各个类的协方差相等。虽然这些强假设很可能在实际数据中并不满足,但是Fisher LDA已经被证明是非常有效地降维算法,其中的原因是线性模型对于噪音的鲁棒性比较好,不容易过拟合,缺点是模型简单,表达能力不强,为了增强Fisher LDA算法的表达能力,可以引入核函数。

PCA:

主成分分析(PCA)与LDA有着非常近似的意思,LDA的输入数据是带标签的,而PCA的输入数据是不带标签的,所以PCA是一种unsupervised learning

  LDA通常来说是作为一个独立的算法存在,给定了训练数据后,将会得到一系列的判别函数(discriminate function),之后对于新的输入,就可以进行预测了。而PCA更像是一个预处理的方法,它可以将原本的数据降低维度,而使得降低了维度的数据之间的方差最大(也可以说投影误差最小,具体在之后的推导里面会谈到)。

方差这个东西是个很有趣的,有些时候我们会考虑减少方差(比如说训练模型的时候,我们会考虑到方差-偏差的均衡),有的时候我们会尽量的增大方差。方差就像是一种信仰(强哥的话),不一定会有很严密的证明,从实践来说,通过尽量增大投影方差的PCA算法,确实可以提高我们的算法质量。

说了这么多,推推公式可以帮助我们理解。我下面将用两种思路来推导出一个同样的表达式。首先是最大化投影后的方差,其次是最小化投影后的损失(投影产生的损失最小)。

    最大化方差法:

假设我们还是将一个空间中的点投影到一个向量中去。首先,给出原空间的中心点:

    假设u1为投影向量,投影之后的方差为:

    上面这个式子如果看懂了之前推导LDA的过程,应该比较容易理解,如果线性代数里面的内容忘记了,可以再温习一下,优化上式等号右边的内容,还是用拉格朗日乘子法

    将上式求导,使之为0,得到:

    这是一个标准的特征值表达式了,λ对应的特征值,u对应的特征向量。上式的左边取得最大值的条件就是λ1最大,也就是取得最大的特征值的时候。假设我们是要将一个D维的数据空间投影到M维的数据空间中(M < D), 那我们取前M个特征向量构成的投影矩阵就是能够使得方差最大的矩阵了。

    最小化损失法:

假设输入数据x是在D维空间中的点,那么,我们可以用D个正交的D维向量去完全的表示这个空间(这个空间中所有的向量都可以用这D个向量的线性组合得到)。在D维空间中,有无穷多种可能找这D个正交的D维向量,哪个组合是最合适的呢?

假设我们已经找到了这D个向量,可以得到:

    我们可以用近似法来表示投影后的点:

    上式表示,得到的新的x是由前M 个基的线性组合加上后D - M个基的线性组合,注意这里的z是对于每个x都不同的,而b对于每个x是相同的,这样我们就可以用M个数来表示空间中的一个点,也就是使得数据降维了。但是这样降维后的数据,必然会产生一些扭曲,我们用J描述这种扭曲,我们的目标是,使得J最小:

    上式的意思很直观,就是对于每一个点,将降维后的点与原始的点之间的距离的平方和加起来,求平均值,我们就要使得这个平均值最小。我们令:

    将上面得到的z与b带入降维的表达式:

    将上式带入J的表达式得到:

    再用上拉普拉斯乘子法(此处略),可以得到,取得我们想要的投影基的表达式为:

    这里又是一个特征值的表达式,我们想要的前M个向量其实就是这里最大的M个特征值所对应的特征向量。证明这个还可以看看,我们J可以化为:

    也就是当误差J是由最小的D - M个特征值组成的时候,J取得最小值。跟上面的意思相同。

总结:

本次主要讲了两种方法,PCA与LDA,两者的思想和计算方法非常类似,但是一个是作为独立的算法存在,另一个更多的用于数据的预处理的工作

转自:

机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA)

线性判别分析(LDA), 主成分分析(PCA)及其推导【转】的更多相关文章

  1. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  2. 运用sklearn进行线性判别分析(LDA)代码实现

    基于sklearn的线性判别分析(LDA)代码实现 一.前言及回顾 本文记录使用sklearn库实现有监督的数据降维技术——线性判别分析(LDA).在上一篇LDA线性判别分析原理及python应用(葡 ...

  3. 机器学习理论基础学习3.2--- Linear classification 线性分类之线性判别分析(LDA)

    在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题 ...

  4. 主成分分析(PCA)与线性判别分析(LDA)

    主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本 ...

  5. 线性判别分析LDA详解

    1 Linear Discriminant Analysis    相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然 ...

  6. 机器学习中的数学-线性判别分析(LDA)

    前言在之前的一篇博客机器学习中的数学(7)——PCA的数学原理中深入讲解了,PCA的数学原理.谈到PCA就不得不谈LDA,他们就像是一对孪生兄弟,总是被人们放在一起学习,比较.这这篇博客中我们就来谈谈 ...

  7. 线性判别分析LDA原理总结

    在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结. ...

  8. 线性判别分析 LDA

    点到判决面的距离 点\(x_0\)到决策面\(g(x)= w^Tx+w_0\)的距离:\(r={g(x)\over \|w\|}\) 广义线性判别函数 因任何非线性函数都可以通过级数展开转化为多项式函 ...

  9. PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质

    机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点 ...

随机推荐

  1. backbone.Model 源码笔记

    backbone.Model backbone的model(模型),用来存储数据,交互数据,数据验证,在view里面可以直接监听model来达到model一改变,就通知视图. 这个里面的代码是从bac ...

  2. SVN Server导项目到本地库时提示"方法OPTIONS失败与无法连接到服务器"

    方法 OPTIONS 失败于 “https://xxxx/svn/xxxx”: 无法连接到服务器 (https://xxxx) 要留意  https 使用了443 端口,检查防火墙是否开放了该端口. ...

  3. 【奇怪现象】用联通访问某些ASP.NET网站会产生__EVENTVALIDATION字段,用电信却只有:__VIEWSTATE。【正常】?原因?

    [奇怪现象]用联通访问某些ASP.NET网站会产生__EVENTVALIDATION字段,用电信却只有:__VIEWSTATE.[正常]?原因? 对于__VIEWSTATE和__EVENTVALIDA ...

  4. SQL Server高级内容之子查询和表链接

    1.子查询概念 (1)就是在查询的where子句中的判断依据是另一个查询的结果,如此就构成了一个外部的查询和一个内部的查询,这个内部的查询就是自查询. (2)自查询的分类 1)独立子查询 ->独 ...

  5. 解决PHP中file_get_contents抓取网页中文乱码问题

    根据网上有朋友介绍说原因可能是服务器开了GZIP压缩. 下面是用firebug查看我的博客的头信息,Gzip是开了的. 请求头信息原始头信息 代码如下 复制代码 Accept text/html,ap ...

  6. 安装Apache(httpd服务)

    安装Apache(httpd服务) ① 移动所有压缩包到root文件夹下(root的家) ② 解压httpd压缩包(.tar.gz) 使用tar指令解压.tar.gz压缩包 tar 指令 -zxf : ...

  7. JAVA多线程通信

    JAVA多线程通信 package com.frank.thread; /** * author:pengyan * date:Jun 16, 2011 * file:ProducerAndCusto ...

  8. 【学习】Windows PE文件学习(一:导出表)

    今天做了一个读取PE文件导出表的小程序,用来学习. 参考了<Windows PE权威指南>一书. 首先, PE文件的全称是Portable Executable,可移植的可执行的文件,常见 ...

  9. python+selenium环境配置(windows7环境)

    下载python[python开发环境] http://python.org/getit/ 下载setuptools[python的基础包工具] http://pypi.python.org/pypi ...

  10. PCB特征阻抗计算神器Polar SI9000安装及破解指南

    近年来,IC集成度的提高和应用,其信号传输频率和速度越来越高,因而在印制板导线中,信号传输(发射)高到某一定值后,便会受到印制板导线本身的影响,从而导致传 输信号的严重失真或完全丧失.这表明,PCB导 ...