高斯牛顿法:

function [ x_ans ] = GaussNewton( xi, yi, ri)
% input : x = the x vector of 3 points
% y = the y vector of 3 points
% r = the radius vector of 3 circles
% output : x_ans = the best answer
% set up r equations
r1 = @(x, y) sqrt((x-xi(1))^2+(y-yi(1))^2) - ri(1);
r2 = @(x, y) sqrt((x-xi(2))^2+(y-yi(2))^2) - ri(2);
r3 = @(x, y) sqrt((x-xi(3))^2+(y-yi(3))^2) - ri(3);
% set up Dr matrix
Dr = @(x) [(x(1) - xi(1))/(sqrt((x(1) - xi(1))^2+(x(2)-yi(1))^2)), (x(2) - yi(1))/(sqrt((x(1) - xi(1))^2+(x(2)-yi(1))^2));
(x(1) - xi(2))/(sqrt((x(1) - xi(2))^2+(x(2)-yi(2))^2)), (x(2) - yi(2))/(sqrt((x(1) - xi(2))^2+(x(2)-yi(2))^2));
(x(1) - xi(3))/(sqrt((x(1) - xi(3))^2+(x(2)-yi(3))^2)), (x(2) - yi(3))/(sqrt((x(1) - xi(3))^2+(x(2)-yi(3))^2))];
% set up r matrix
r = @(x) [r1(x(1), x(2)); r2(x(1), x(2)); r3(x(1), x(2))];
x0 = [0, 0]; % initial guess
while 1
A = Dr(x0);
v0 = (A' * A) \ (- A' * r(x0));
x1 = x0 + v0';
if norm(x1-x0)<1e-6 % break squest
break;
end
x0 = x1;
end
x_ans = x1;
end

Levenberg–Marquardt方法:

function [ x_ans ] = LeveMarq( ti, yi, x_guess, lmd)
% input : t = the x vector of 5 points
% y = the y vector of 5 points
% x_guess = the guess vector of x_ans
% output : x_ans = the best answer
% set up r matrix
r = @(x) [x(1) * exp(-x(2)*(ti(1) - x(3))^2) - yi(1);
x(1) * exp(-x(2)*(ti(2) - x(3))^2) - yi(2);
x(1) * exp(-x(2)*(ti(3) - x(3))^2) - yi(3);
x(1) * exp(-x(2)*(ti(4) - x(3))^2) - yi(4);
x(1) * exp(-x(2)*(ti(5) - x(3))^2) - yi(5)];
% set up Dr matrix
Dr = @(x) [exp(-x(2)*(ti(1)-x(3))^2), -x(1)*(ti(1)-x(3))^2*exp(-x(2)*(ti(1)-x(3))^2), 2*x(1)*x(2)*(ti(1)-x(3))*exp(-x(2)*(ti(1)-x(3))^2);
exp(-x(2)*(ti(2)-x(3))^2), -x(1)*(ti(2)-x(3))^2*exp(-x(2)*(ti(2)-x(3))^2), 2*x(1)*x(2)*(ti(2)-x(3))*exp(-x(2)*(ti(2)-x(3))^2);
exp(-x(2)*(ti(3)-x(3))^2), -x(1)*(ti(3)-x(3))^2*exp(-x(2)*(ti(3)-x(3))^2), 2*x(1)*x(2)*(ti(3)-x(3))*exp(-x(2)*(ti(3)-x(3))^2);
exp(-x(2)*(ti(4)-x(3))^2), -x(1)*(ti(4)-x(3))^2*exp(-x(2)*(ti(4)-x(3))^2), 2*x(1)*x(2)*(ti(4)-x(3))*exp(-x(2)*(ti(4)-x(3))^2);
exp(-x(2)*(ti(5)-x(3))^2), -x(1)*(ti(5)-x(3))^2*exp(-x(2)*(ti(5)-x(3))^2), 2*x(1)*x(2)*(ti(5)-x(3))*exp(-x(2)*(ti(5)-x(3))^2)]; x0 = x_guess; % initial guess
while 1
A = Dr(x0);
M_A = A' * A + lmd .* diag(diag(A' * A));
M_b = - A' * r(x0);
v0 = M_A \ M_b;
x1 = x0 + v0';
if norm(x1-x0)<1e-6 % break squest
break;
end
x0 = x1;
end
x_ans = x1;
end

matlab实现高斯牛顿法、Levenberg–Marquardt方法的更多相关文章

  1. 【math】梯度下降法(梯度下降法,牛顿法,高斯牛顿法,Levenberg-Marquardt算法)

    原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何为梯度? 一般解释: f(x)在x0的梯度:就是f(x)变化最快的方向 举个例子 ...

  2. MATLAB中多行注释的三种方法

    MATLAB中多行注释的三种方法 A. %{ 若干语句 %} B. 多行注释: 选中要注释的若干语句, 编辑器菜单Text->Comment, 或者快捷键Ctrl+R 取消注释: 选中要取消注释 ...

  3. 梯度下降法、牛顿法、高斯牛顿法、LM最优化算法

    1.梯度下降法 2.牛顿法 3.高斯牛顿法 4.LM算法

  4. MATLAB(1)——基本调试方法(Debug)

    作者:桂. 时间:2017-02-28  07:06:30 链接:http://www.cnblogs.com/xingshansi/articles/6477185.html 声明:转载请注明出处, ...

  5. MATLAB读取写入文本数据最佳方法 | Best Method for Loading & Saving Text Data Using MATLAB

    MATLAB读取文件有很多方法.然而笔者在过去进行数据处理中,由于函数太多,相互混杂,与C#,Python等语言相比,反而认为读取文本数据比较麻烦.C#和Python等高级语言中,对于大部分的文本数据 ...

  6. matlab实现共轭梯度法、多元牛顿法、broyden方法

    共轭梯度法: function [ x, r, k ] = CorGrant( x0, A, b ) x = x0; r = b - A * x0; d = r; X = ones(length(x) ...

  7. matlab练习程序(高斯牛顿法最优化)

    计算步骤如下: 图片来自<视觉slam十四讲>6.2.2节. 下面使用书中的练习y=exp(a*x^2+b*x+c)+w这个模型验证一下,其中w为噪声,a.b.c为待解算系数. 代码如下: ...

  8. logistic growth model . 求解方法 (高斯牛顿法)

    https://www.stat.tamu.edu/~jnewton/604/chap4.pdf http://www.metla.fi/silvafennica/full/sf33/sf334327 ...

  9. 使用MATLAB对图像处理的几种方法(上)

    实验一图像的滤波处理 一.实验目的 使用MATLAB处理图像,掌握均值滤波器和加权均值滤波器的使用,对比两种滤波器对图像处理结果及系统自带函数和自定义函数性能的比较,体会不同大小的掩模对图像细节的影响 ...

随机推荐

  1. Oracle10GODP连接11G数据库,出现ORA - 1017用户名/口令无效; 登录被拒绝 的问题

    一.出现症状 1.使用sqlplus连接正常 2.C#使用10g的ODP.NET连接时,报上面的错误 二.原因 1.Oracle11G之前密码是不区分大小写的,从11G开始默认密码区分大小写 2.使用 ...

  2. tornado 信号处理

    一般情况下,对于线上的程序,我们是不能采取kill -9 来杀掉进程的 因为程序可能有未处理完的程序,如果贸然采取kill -9可能会导致数据不一致 如果需要关闭程序怎么办呢,一般情况下我们采取信号技 ...

  3. Part 7Handling events in AngularJS

    Let us understand with an example. Here is what we want to do. 1. Display the list of technologies i ...

  4. Hadoop YARN配置参数剖析—RM与NM相关参数

    注意,配置这些参数前,应充分理解这几个参数的含义,以防止误配给集群带来的隐患.另外,这些参数均需要在yarn-site.xml中配置. 1.    ResourceManager相关配置参数 (1) ...

  5. VS2015环境下Crystal Reports(水晶报表)的安装使用

    1.首先下载Crystal Reports13对于Visual Studio 2015支持的2个文件. CRforVS_13_0_17 CRforVS_redist_install_64bit_13_ ...

  6. MVC4 图片上传

    新增 new { enctype = "multipart/form-data" } 这个必须要有 @using (Html.BeginForm(Html.BeginForm(&q ...

  7. Linux下用freetds连接mssql中文乱码的问题【参考2】

    php5.3的情况下,用pdo的dblib驱动无法连接mssql的,根据官方的描述,5.2已经修改这个bug,5.3没有. 用php自带的mssql函数可以的.编译freetds,php_mssql, ...

  8. linux 在xenserver上安装如何显示图形界面

    centos5.8 64-bit和 centos 6.5 64-bit xenserver安装linux的时候默认使用的VHM,选择对应的虚拟机模板安装linux是Linux Text界面. VHM ...

  9. ASP.NET C# 文件下载

    1.文件下载到客户端 //WriteFile实现下载 protected void Download_Click(object sender, EventArgs e) { string fileNa ...

  10. Java中toArray的用法探究(java数组与list转换)

    转载原文地址: http://blog.csdn.net/guopengzhang/article/details/5497875 一.             Incident import jav ...