matlab实现高斯牛顿法、Levenberg–Marquardt方法
高斯牛顿法:
function [ x_ans ] = GaussNewton( xi, yi, ri)
% input : x = the x vector of 3 points
% y = the y vector of 3 points
% r = the radius vector of 3 circles
% output : x_ans = the best answer
% set up r equations
r1 = @(x, y) sqrt((x-xi(1))^2+(y-yi(1))^2) - ri(1);
r2 = @(x, y) sqrt((x-xi(2))^2+(y-yi(2))^2) - ri(2);
r3 = @(x, y) sqrt((x-xi(3))^2+(y-yi(3))^2) - ri(3);
% set up Dr matrix
Dr = @(x) [(x(1) - xi(1))/(sqrt((x(1) - xi(1))^2+(x(2)-yi(1))^2)), (x(2) - yi(1))/(sqrt((x(1) - xi(1))^2+(x(2)-yi(1))^2));
(x(1) - xi(2))/(sqrt((x(1) - xi(2))^2+(x(2)-yi(2))^2)), (x(2) - yi(2))/(sqrt((x(1) - xi(2))^2+(x(2)-yi(2))^2));
(x(1) - xi(3))/(sqrt((x(1) - xi(3))^2+(x(2)-yi(3))^2)), (x(2) - yi(3))/(sqrt((x(1) - xi(3))^2+(x(2)-yi(3))^2))];
% set up r matrix
r = @(x) [r1(x(1), x(2)); r2(x(1), x(2)); r3(x(1), x(2))];
x0 = [0, 0]; % initial guess
while 1
A = Dr(x0);
v0 = (A' * A) \ (- A' * r(x0));
x1 = x0 + v0';
if norm(x1-x0)<1e-6 % break squest
break;
end
x0 = x1;
end
x_ans = x1;
end
Levenberg–Marquardt方法:
function [ x_ans ] = LeveMarq( ti, yi, x_guess, lmd)
% input : t = the x vector of 5 points
% y = the y vector of 5 points
% x_guess = the guess vector of x_ans
% output : x_ans = the best answer
% set up r matrix
r = @(x) [x(1) * exp(-x(2)*(ti(1) - x(3))^2) - yi(1);
x(1) * exp(-x(2)*(ti(2) - x(3))^2) - yi(2);
x(1) * exp(-x(2)*(ti(3) - x(3))^2) - yi(3);
x(1) * exp(-x(2)*(ti(4) - x(3))^2) - yi(4);
x(1) * exp(-x(2)*(ti(5) - x(3))^2) - yi(5)];
% set up Dr matrix
Dr = @(x) [exp(-x(2)*(ti(1)-x(3))^2), -x(1)*(ti(1)-x(3))^2*exp(-x(2)*(ti(1)-x(3))^2), 2*x(1)*x(2)*(ti(1)-x(3))*exp(-x(2)*(ti(1)-x(3))^2);
exp(-x(2)*(ti(2)-x(3))^2), -x(1)*(ti(2)-x(3))^2*exp(-x(2)*(ti(2)-x(3))^2), 2*x(1)*x(2)*(ti(2)-x(3))*exp(-x(2)*(ti(2)-x(3))^2);
exp(-x(2)*(ti(3)-x(3))^2), -x(1)*(ti(3)-x(3))^2*exp(-x(2)*(ti(3)-x(3))^2), 2*x(1)*x(2)*(ti(3)-x(3))*exp(-x(2)*(ti(3)-x(3))^2);
exp(-x(2)*(ti(4)-x(3))^2), -x(1)*(ti(4)-x(3))^2*exp(-x(2)*(ti(4)-x(3))^2), 2*x(1)*x(2)*(ti(4)-x(3))*exp(-x(2)*(ti(4)-x(3))^2);
exp(-x(2)*(ti(5)-x(3))^2), -x(1)*(ti(5)-x(3))^2*exp(-x(2)*(ti(5)-x(3))^2), 2*x(1)*x(2)*(ti(5)-x(3))*exp(-x(2)*(ti(5)-x(3))^2)];
x0 = x_guess; % initial guess
while 1
A = Dr(x0);
M_A = A' * A + lmd .* diag(diag(A' * A));
M_b = - A' * r(x0);
v0 = M_A \ M_b;
x1 = x0 + v0';
if norm(x1-x0)<1e-6 % break squest
break;
end
x0 = x1;
end
x_ans = x1;
end
matlab实现高斯牛顿法、Levenberg–Marquardt方法的更多相关文章
- 【math】梯度下降法(梯度下降法,牛顿法,高斯牛顿法,Levenberg-Marquardt算法)
原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何为梯度? 一般解释: f(x)在x0的梯度:就是f(x)变化最快的方向 举个例子 ...
- MATLAB中多行注释的三种方法
MATLAB中多行注释的三种方法 A. %{ 若干语句 %} B. 多行注释: 选中要注释的若干语句, 编辑器菜单Text->Comment, 或者快捷键Ctrl+R 取消注释: 选中要取消注释 ...
- 梯度下降法、牛顿法、高斯牛顿法、LM最优化算法
1.梯度下降法 2.牛顿法 3.高斯牛顿法 4.LM算法
- MATLAB(1)——基本调试方法(Debug)
作者:桂. 时间:2017-02-28 07:06:30 链接:http://www.cnblogs.com/xingshansi/articles/6477185.html 声明:转载请注明出处, ...
- MATLAB读取写入文本数据最佳方法 | Best Method for Loading & Saving Text Data Using MATLAB
MATLAB读取文件有很多方法.然而笔者在过去进行数据处理中,由于函数太多,相互混杂,与C#,Python等语言相比,反而认为读取文本数据比较麻烦.C#和Python等高级语言中,对于大部分的文本数据 ...
- matlab实现共轭梯度法、多元牛顿法、broyden方法
共轭梯度法: function [ x, r, k ] = CorGrant( x0, A, b ) x = x0; r = b - A * x0; d = r; X = ones(length(x) ...
- matlab练习程序(高斯牛顿法最优化)
计算步骤如下: 图片来自<视觉slam十四讲>6.2.2节. 下面使用书中的练习y=exp(a*x^2+b*x+c)+w这个模型验证一下,其中w为噪声,a.b.c为待解算系数. 代码如下: ...
- logistic growth model . 求解方法 (高斯牛顿法)
https://www.stat.tamu.edu/~jnewton/604/chap4.pdf http://www.metla.fi/silvafennica/full/sf33/sf334327 ...
- 使用MATLAB对图像处理的几种方法(上)
实验一图像的滤波处理 一.实验目的 使用MATLAB处理图像,掌握均值滤波器和加权均值滤波器的使用,对比两种滤波器对图像处理结果及系统自带函数和自定义函数性能的比较,体会不同大小的掩模对图像细节的影响 ...
随机推荐
- [转]c# xml.Load() locking file on disk causing errors
本文转自:http://stackoverflow.com/questions/1812598/c-sharp-xml-load-locking-file-on-disk-causing-errors ...
- 略谈Android之Intent
前言:大家都知道Android程序的实现一般都由四大组件构成: Activity :Android程序实现功能的主体,提供了和客户交互的界面,也提供了和后台交互的功能. Service :是一个没有界 ...
- HDU1358:Period
第一次做KMP.还没有理解透. 在自己写一遍时没有让next[0]初始化为-1. 还有就是next应该是c++中的关键字,提交后编译错误. From: http://blog.csdn.net/lib ...
- 人情世故&潜规则
大凡成功的牛人,无一例外都明白这一点.他们读懂了社会的本质和人际交往的潜规则,知道对方需要什么,知道对方脑子里在想什么.你几乎看不见他奔波劳碌,但是在不动声色中,他就已经实现人生目标.他们成功的密码是 ...
- 运行第一个Node.js程序
初学Node.js,萌新一枚.感觉Node.js挺不错的,从基础开始一步一步来,加油吧! 我们来使用Node.js的express来运行第一个程序helloworld: 在命令提示符键入express ...
- SQL里IN的用法以及优化
1.in后条件不多,可以考虑主表建索引,或用union all 代替 2. in 和 exists的区别: 如果子查询得出的结果集记录较少,主查询中的表较大且又有索引时应该用in, 反之如果外层的主查 ...
- javascript将浮点数转换成整数的三个方法
浮点数转换成整数方法有很多,本例为大家介绍常用的三个方法,如果读者想到其他好用方法,也可以交流一下 Summary 暂时我就想到3个方法而已.如果读者想到其他好用方法,也可以交流一下 parseI ...
- spring3+struts2+hibernate3整合出现的问题,No mapping found for dependency [type=java.lang.String, name='struts.objectFactory.spring.enableAopSupport']
七月 11, 2016 3:49:24 下午 org.apache.tomcat.util.digester.SetPropertiesRule begin警告: [SetPropertiesRule ...
- GForms开发平台
1. 开发平台概述 1.1. 产品概述 GForms开发平台让开发人员甚至非技术人员在短短几分钟内创建全功能的展现服务,让开发团队更加适应客户和市场的需求,从而提高客户服务和速度实现收益. GForm ...
- C# 将日期转换成中文格式
没有什么难点,只是要小心,要考虑到月.日上 10 的说法,比如:10 不能直接转换成一〇,也不能像上 20 那样转换成一十〇,应该是十. 特点总结: 数字为 10 时,结果为十: 数字大于 10 时, ...