POJ 2528 Mayor’s posters
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 37982 | Accepted: 11030 |
Description
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of
the wall; the width of a poster can be any integer number of bytes (byte
is the unit of length in Bytetown). - The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is
enough place for all candidates). When the electoral campaign was
restarted, the candidates were placing their posters on the wall and
their posters differed widely in width. Moreover, the candidates started
placing their posters on wall segments already occupied by other
posters. Everyone in Bytetown was curious whose posters will be visible
(entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the
posters are placed given the information about posters' size, their
place and order of placement on the electoral wall.
Input
first line of input contains a number c giving the number of cases that
follow. The first line of data for a single case contains number 1 <=
n <= 10000. The subsequent n lines describe the posters in the order
in which they were placed. The i-th line among the n lines contains two
integer numbers li and ri which are the number of the wall
segment occupied by the left end and the right end of the i-th poster,
respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.
Output
The picture below illustrates the case of the sample input.
Sample Input
1
5
1 4
2 6
8 10
3 4
7 10
Sample Output
4
题目意思是在墙上贴海报,海报可以相互覆盖,问你最后可以看见几张海报。
因为数据量大,若不离散化会超时或超内存。故学习了别人写法,简单的hash后再线段树成段更新。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
#define maxn 10010
bool hash[maxn];
int li[maxn] , ri[maxn];
int X[maxn<<4];
int col[maxn<<4];
int cnt;
void PushDown(int rt)
{
if (col[rt] != -1)
{
col[rt<<1] = col[rt<<1|1] = col[rt];
col[rt] = -1;
}
}
void update(int L,int R,int c,int l,int r,int rt)
{
if (L<=l && r<=R)
{
col[rt] = c;
return ;
}
PushDown(rt);
int m =(l+r)>> 1;
if (L<=m) update(L , R , c , lson);
if (m<R) update(L , R , c , rson);
}
void query(int l,int r,int rt)
{
if (col[rt] != -1)
{
if (!hash[col[rt]]) cnt ++;
hash[ col[rt] ] = true;
return ;
}
if (l == r) return ;
int m = (l + r)>>1;
query(lson);
query(rson);
}
int Bin(int key,int n,int X[])
{
int l = 0 , r = n - 1;
while (l <= r)
{
int m = (l + r) >> 1;
if (X[m] == key) return m;
if (X[m] < key) l = m + 1;
else r = m - 1;
}
return -1;
}
int main()
{
int T , n;
scanf("%d",&T);
while (T --)
{
scanf("%d",&n);
int nn = 0;
for (int i=0; i<n; i ++)
{
scanf("%d%d",&li[i],&ri[i]);
X[nn++] = li[i];
X[nn++] = ri[i];
}
sort(X , X+nn);
int m = 1;
for (int i = 1 ; i < nn; i ++)
{
if (X[i] != X[i-1]) X[m ++] = X[i];
}
for (int i = m - 1 ; i > 0 ; i --)
{
if (X[i] != X[i-1] + 1) X[m ++] = X[i-1] + 1;
}
sort(X , X + m);
memset(col , -1 , sizeof(col));
for (int i = 0 ; i < n ; i ++)
{
int l = Bin(li[i], m, X);
int r = Bin(ri[i], m, X);
update(l, r, i, 0, m - 1, 1);
}
cnt = 0;
memset(hash, false, sizeof(hash));
query(0, m - 1, 1);
printf("%d\n",cnt);
}
return 0;
}
POJ 2528 Mayor’s posters的更多相关文章
- poj 2528 Mayor's posters(线段树+离散化)
/* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...
- poj 2528 Mayor's posters 线段树+离散化技巧
poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...
- POJ - 2528 Mayor's posters(dfs+分治)
POJ - 2528 Mayor's posters 思路:分治思想. 代码: #include<iostream> #include<cstdio> #include< ...
- POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)
POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...
- POJ 2528 Mayor's posters 【区间离散化+线段树区间更新&&查询变形】
任意门:http://poj.org/problem?id=2528 Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ 2528 Mayor's posters
Mayor's posters Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 59239 Accepted: 17157 ...
- poj 2528 Mayor's posters 线段树区间更新
Mayor's posters Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...
- POJ 2528——Mayor's posters——————【线段树区间替换、找存在的不同区间】
Mayor's posters Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 2528 Mayor's posters(线段树+离散化)
Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...
随机推荐
- Cocos2d-x学习笔记(10)(CCMenu菜单)
1.CCMenu创建方式 CCMenu* menu = CCMenu::create(cocos2d::CCMenuItem* item,--)參数为CCMenuItem菜单项的对象可变參数列表 2. ...
- 169 Majority Element [LeetCode Java实现]
题目链接:majority-element /** * Given an array of size n, find the majority element. The majority elemen ...
- Fedora 19安装Fcitx输入法并安装搜狗输入法资源包
系统自带的Ibus输入法非常的不好用.在Sublime Text下中文根本不能输入.于是想着换成Fcitx. 1.先卸载系统自带的Ibus输入法 sudo yum remove ibus gsetti ...
- 关于更改apache和mysql的路径的问题..
1.禁用selinux 系统管理->selinux管理->enforing模式..改为disable..然后重启 2.修改httpd.conf的各个路径 索引后发现指向欢迎页面则注释下面这 ...
- innodb_max_dirty_pages_pct与检查点的关系
http://ourmysql.com/archives/310 数据库运行一段时间后,经常导致服务器大量的swap,我怀疑是innodb中的脏数据太多了,因为没有free space了,mysq ...
- Hadoop发展历史简介
简介 本篇文章主要介绍了Hadoop系统的发展历史以及商业化现状, 科普文. 如果你喜欢本博客,请点此查看本博客所有文章:http://www.cnblogs.com/xuanku/p/index.h ...
- LINUX C++ 技术博客
http://blog.csdn.net/pcliuguangtao/article/category/676422
- 解决Kscope中文乱码问题
当安装Kscope完成后,然后配置以下三个路径:Cscope path:/usr/bin/cscopeCtags path:/usr/bin/ctagsDot path:/usr/bin/dot 对于 ...
- 称球问题(zt)
下面说的这个问题可能大家都看到过,它是这么描述的: 现在有n(n>=2)个球,n个球外观一模一样,但是重量有区别,其中有且仅有一个球的重量比其它n-1个球要重,现在有一个天平,天平是完好无损的, ...
- Android进阶笔记10:Android 万能适配器
1. Android 万能适配器 项目中Listview GridView几乎是必用的组件,Android也提供一套机制,为这些控件绑定数据,那就是Adapter.用起来虽然还不错,但每次都 ...