二叉搜索树(BST)
(第一段日常扯蛋,大家不要看)这几天就要回家了,osgearth暂时也不想弄了,毕竟不是几天就能弄出来的,所以打算过完年回来再弄。这几天闲着也是闲着,就掏出了之前买的算法导论看了看,把二叉搜索树实现了下。
一、算法导论中讲解
1、二叉搜索树
节点
每个节点包含key(关键字)、left(指向左孩子)、right(指向右孩子)、parent(指向父节点)。
额外可有可无num(相同关键字的节点个数)。
规则
整个二叉树的根节点的parent指向NULL,且唯一。
左子树上所有节点的key均小于其根节点的key。
右子树上所有节点的key均大于其根节点的key。
最低层的节点的left与right指向NULL。
2、二叉搜索树的遍历
二叉搜索树的遍历分为先序遍历,中序遍历,后序遍历(由x.key的输出位置决定)。
中序遍历即为按照key从大到小输出。
3、查询二叉树
循环查找
迭代查找
4、最大关键字元素和最小关键字元素
5、后继和前驱
6、插入
对于BST插入只能插入到最下层,例如插入13。
伪代码:
7、删除
删除分为三种情况
1.删除节点的left(或者right)指向NULL,直接把right(或者left)提升到该节点处。
2.删除节点的right和left不为NULL,且其right的left为NULL,直接把right提升到该节点处。
3.删除节点的right和left不为NULL,且其right的left不为NULL,找到删除节点的后继(即大于删除节点key的最小key所在节点y),把后继y的right提到后继y的位置(即让后继y的parent的left指向后继y的right),再用删除节点的right和left分别代替后继y的right和left,最后再用后继y把删除节点替换掉。
伪代码:
节点替换
删除
三、c++代码
#include <iostream>
#include <memory>
#include <vector> using namespace std; //节点结构
struct Node {
int key;
int num;
shared_ptr<Node> parent;
shared_ptr<Node> left;
shared_ptr<Node> right;
Node(int _key) : key(_key), num(),parent(NULL), left(NULL), right(NULL) {}
}; //循环插入
bool Insert(shared_ptr<Node>& root, int _key) {
shared_ptr<Node> node(new Node(_key));
if (root == NULL) {
root = node;
return true;
}
shared_ptr<Node> x = root;
shared_ptr<Node> y;
while(x != NULL) {
y = x;
if (node->key == x->key) {
x->num++;
return true;
}
if (node->key < x->key) x = x->left;
else x = x->right;
}
if (node->key < y->key) {
y->left = node;
node->parent = y;
}
else {
y->right = node;
node->parent = y;
}
return true;
} //迭代插入
bool reInsert(shared_ptr<Node>& root, shared_ptr<Node> node) {
if (root == NULL) {
root = node;
return true;
}
if (node->key == root->key) {
root->num++;
return true;
}
if (node->key < root->key) return reInsert(root->left, node);
else return reInsert(root->right, node);
} //创建二叉树
void BSTCreat(shared_ptr<Node>& root, vector<int> keys) {
for (int key : keys) {
Insert(root, key);
}
} //遍历
void showBST(shared_ptr<Node>& root) {
if (root != NULL) {
// //cout << root->key << " ";//先序遍历
// showBST(root->left);
// cout << root->key << " "; //中序遍历
// showBST(root->right);
// //cout << root->key << " ";//后序遍历
//cout << root->key << " "; //first
showBST(root->left);
cout << root->key << " "; //mid
showBST(root->right);
//cout << root->key << " "; //end
}
} //删除节点
bool Delete(shared_ptr<Node>& root, int _key) {
if(root == NULL) return false;
if(root->key < _key) return Delete(root->right, _key);
else if(root->key > _key)return Delete(root->left, _key);
else {
if (root->right==NULL) {
root = root->left;
return true;
}
if (root->left==NULL) {
root = root->right;
return true;
}
if (root->right->left==NULL) {
root->right->left = root->left;
root = root->right;
return true;
}
shared_ptr<Node> y = root->right;
while(y->left!=NULL) {
y = y->left;
}
y->parent->left = y->right;
y->right = root->right;
y->left = root->left;
root = y;
return true;
}
} bool isSubtree(shared_ptr<Node> pRootA, shared_ptr<Node> pRootB) {
if (pRootB == NULL) return true;
if (pRootA == NULL) return false;
if (pRootB->key == pRootA->key) {
return isSubtree(pRootA->left, pRootB->left)
&& isSubtree(pRootA->right, pRootB->right);
} else return false;
} bool HasSubtree(shared_ptr<Node> pRootA, shared_ptr<Node> pRootB)
{
if (pRootA == NULL || pRootB == NULL) return false;
return isSubtree(pRootA, pRootB) ||
HasSubtree(pRootA->left, pRootB) ||
HasSubtree(pRootA->right, pRootB);
} int main() {
vector<int> keys1{,,,,,,};
vector<int> keys2{,,}; shared_ptr<Node> root1;
shared_ptr<Node> root2;
BSTCreat(root1, keys1);
BSTCreat(root2, keys2); cerr << HasSubtree(root1, root2) << endl; return ; }
二叉搜索树(BST)的更多相关文章
- C++版 - 剑指offer 面试题24:二叉搜索树BST的后序遍历序列(的判断) 题解
剑指offer 面试题24:二叉搜索树的后序遍历序列(的判断) 题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则返回true.否则返回false.假设输入的数组的任意两个 ...
- 萌新笔记之二叉搜索树(BST)
前言,以前搞过线段树,二叉树觉得也就那样= =.然后数据结构的课也没怎么听过,然后下周期中考... 本来以为今天英语考完可以好好搞ACM了,然后这个数据结构期中考感觉会丢人,还是好好学习一波. 二叉搜 ...
- 给定一个二叉搜索树(BST),找到树中第 K 小的节点
问题:给定一个二叉搜索树(BST),找到树中第 K 小的节点. 出题人:阿里巴巴出题专家:文景/阿里云 CDN 资深技术专家. 考察点: 1. 基础数据结构的理解和编码能力 2. 递归使用 参考答案 ...
- 在二叉搜索树(BST)中查找第K个大的结点之非递归实现
一个被广泛使用的面试题: 给定一个二叉搜索树,请找出其中的第K个大的结点. PS:我第一次在面试的时候被问到这个问题而且让我直接在白纸上写的时候,直接蒙圈了,因为没有刷题准备,所以就会有伤害.(面完的 ...
- 二叉搜索树 (BST) 的创建以及遍历
二叉搜索树(Binary Search Tree) : 属于二叉树,其中每个节点都含有一个可以比较的键(如需要可以在键上关联值), 且每个节点的键都大于其左子树中的任意节点而小于右子树的任意节点的键. ...
- [LeetCode] Convert BST to Greater Tree 将二叉搜索树BST转为较大树
Given a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original B ...
- 二叉搜索树(BST)学习笔记
BST调了一天,最后遍历参数错了,没药救了-- 本文所有代码均使用数组+结构体,不使用指针! 前言--BFS是啥 BST 二叉搜索树是基于二叉树的一种树,一种特殊的二叉树. 二叉搜索树要么是一颗空树, ...
- hdu 3791:二叉搜索树(数据结构,二叉搜索树 BST)
二叉搜索树 Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submiss ...
- 数据结构---二叉搜索树BST实现
1. 二叉查找树 二叉查找树(Binary Search Tree),也称为二叉搜索树.有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一 ...
随机推荐
- geth中UTC文件与私钥的关系
在创建了自己的本地区块链后,我们会得到一个文件夹keystore,该文件夹是用来存储你在这个区块链中创建的账户的备份钥匙文件,比如在这里我有一个账户的备份钥匙文件为:UTC--2018-07-12T0 ...
- AI 概率论
概率论 不确定性 量化 频率 频率派 贝叶斯派 1.随机变量(random variable) 随机取不同值的变量,取值可以离散或者连续. 2.概率分布(probability distributio ...
- WireShark抓包工具使用
WireShark是一款网络封包分析软件,它抓取网络封包,并尽可能显示出最详细的封包资料. wireshark的准备工作 安装wireshark sudo apt-get install wiresh ...
- JavaWeb学习总结-12 JSTL标签语言
一 JSTL JSP标准标签库(JSTL)是一个JSP标签集合,它封装了JSP应用的通用核心功能. JSTL支持通用的.结构化的任务,比如迭代,条件判断,XML文档操作,国际化标签,SQL标签. 除了 ...
- (转)Linux的用户和用户组管理
原文 Linux是个多用户多任务的分时操作系统,所有一个要使用系统资源的用户都必须先向系统管理员申请一个账号,然后以这个账号的身份进入系统.用户的账号一方面能帮助系统管理员对使用系统的用户进行跟踪,并 ...
- WPF中TreeView.BringIntoView方法的替代方案
原文:WPF中TreeView.BringIntoView方法的替代方案 WPF中TreeView.BringIntoView方法的替代方案 周银辉 WPF中TreeView.BringIntoVie ...
- 【LGR-047】洛谷5月月赛
这次我期待了很久的Luogu月赛崩掉了 传说中的Luogu神机就这样被卡爆了 然后我过了20min才登上Luogu的网站,30min后才看到题目 然后交T1TM的不给我测!!!然后又交了一次机子就炸了 ...
- 给 MSYS2 添加中科大的源
最近一段时间不知怎么的,使用默认的 MSYS2 源升级软件或是安装新软件的特别的慢.所以就翻了翻国内的几个开源软件的镜像库,发现中科大的库里就有 MSYS2.所以就研究了一下,给 MSYS2 添加了中 ...
- ABP+AdminLTE+Bootstrap Table权限管理系统第六节--abp控制器扩展及json封装以及6种处理时间格式化的方法
返回总目录:ABP+AdminLTE+Bootstrap Table权限管理系统一期 一,控制器AbpController 说完了Swagger ui 我们再来说一下abp对控制器的处理和json的封 ...
- Object-Oriented(一)创建对象
自用备忘笔记 前言 虽然可以使用 Object 和对象字面量创建对象,但是如果要创建大量相似的对象又显得麻烦.为解决这个问题,人们开始使用工厂模式的变种. 工厂模式 function person(n ...