题目大意:给定 \(N < 2e9\),求不超过 N 的最大反素数。

题解:

引理1:不超过 2e9 的数的质因子分解中,最多有 10 个不同的质因子,且各个质因子的指数和不超过30。

引理2:题目要求的最大反素数,实际上是求不超过 N 的数中因子数最多的数的集合中最小的那个数。

引理3:通过引理 2 以及交换证明法可以得出,各个质因子指数必须单调递减。

代码如下

#include <bits/stdc++.h>
using namespace std; int n,cnt[15];
long long ans,sum;
int p[11]={0,2,3,5,7,11,13,17,19,23,29}; void dfs(int now,long long val,long long sum0){
if(now==11){
if(sum0>sum||(sum0==sum&&val<ans))ans=val,sum=sum0;
return;
}
for(int i=0;i<=cnt[now-1];i++){
if(val>n)break;
cnt[now]=i;
dfs(now+1,val,sum0*(i+1));
val*=(long long)p[now];
}
} void solve(){
ans=1e12,cnt[0]=0x3f3f3f3f;
scanf("%d",&n);
dfs(1,1,1);
printf("%lld\n",ans);
} int main(){
solve();
return 0;
}

【洛谷P1463】反素数的更多相关文章

  1. 洛谷P1463 反素数

    经典题了,很难想到这TM是搜索...... 题意:求[1, n]中约数最多的数中最小的. 解:我们有约数个数定理. 所以考虑通过枚举每个质因数个数来直接计算出约数个数. 然后就可以搜索了. 注意:若p ...

  2. 洛谷 [P1436] 反素数

    算术基本定理的应用 算术基本定理: 一个正整数 \(N\) 能唯一分解成如下形式 \[N=p_1 ^ {c_1}p_2^{c_2}\cdots P_m ^ {c_m}\] 其中 \(c_i\) 都是正 ...

  3. 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)

    洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式  ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...

  4. 洛谷 P1463 [SDOI2005]反素数ant

    P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...

  5. 洛谷 P1463 [POI2002][HAOI2007]反素数

    题目链接 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1, ...

  6. 洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  7. 洛谷 P1463 [HAOI2007]反素数

    https://www.luogu.org/problemnew/show/P1463 注意到答案就是要求1-n中约数最多的那个数(约数个数相同的取较小的) 根据约数个数的公式,在约数个数相同的情况下 ...

  8. 洛谷 P1463、POI2002、HAOI2007 反素数

    题意: 求最小的$x\in[1,N]$,使得$x$为$g(x)$最大的数 中最小的一个. 分析: 1.$x$不会有超过$10$个不同质因子.理由:$2 \times 3\times 5...\time ...

  9. 【洛谷P1835】素数密度

    题目描述: 给定区间[L,R](L≤R≤2147483647,R-L≤1000000),请计算区间中素数的个数. 思路: 暴力: 蒟蒻:哦?绿题?这么水?(便打出下面代码) 这绝对是最容易想到的!但, ...

随机推荐

  1. ExtJS初探:在项目中使用ExtJS

    注意:本文写作时间是 2013 年,所讲的 ExtJS 如今早已过时,请勿学习! -------------------------------- 今天ExtJS官网发布了ExtJS最新正式版4.2. ...

  2. webvirtmgr-重命名kvm虚拟机的名称

    之前部署了Webvirtmgr平台管理kvm虚拟机,由于虚拟机在创建时名称是顺便起的,后续在虚拟机上部署了部分业务.为了便于管理,最好将虚拟机的名称重置下. 现在说下如何修改kvm中虚拟机的名称: 比 ...

  3. 分布式监控系统Zabbix-3.0.3-完整安装记录 - 添加shell脚本监控

    对公司的jira访问状态进行监控,当访问状态返回值是200的时候,脚本执行结果为1:其他访问状态返回值,脚本执行结果是0.然后将该脚本放在zabbix进行监控,当非200状态时发出报警.jira访问状 ...

  4. Python-复习-习题-13

    复习 dict: dic = {'name':'alex'}增:dic['age'] = 21 存在就覆盖dic.setdefault() 存在什么也不做,没有就增加 删除:pop()按照key删除, ...

  5. OneZero第一次随感

    >本人基础薄弱,有幸加入这个团队,甚感欣慰.这是本人第一次尝试写博客,说实话,胆怯.因为能力有限,怕技能匮乏,说不好.但是我知道既然加入这个团队,就要为团队负责.万事开头难,过程也挺难(就我个人 ...

  6. dxteam团队项目终审报告

    一. 团队成员的简介和个人博客地址 M1阶段 http://www.cnblogs.com/dxteam/p/3991514.html M2阶段 新成员 邓亚梅 http://www.cnblogs. ...

  7. github的使用心得

    我的github地址:https://github.com/gaino1/test GitHub 是一个用于使用Git版本控制系统的项目的基于互联网的存取服务. GitHub可以托管各种git库,并提 ...

  8. b总结

    Beta 答辩总结 评审表 组名 格式 内容 ppt 演讲 答辩 总计 天机组 15 15 13 15 14 72 PMS 16 16 15 16 16 79 日不落战队 16 17 17 17 17 ...

  9. log4php的使用方法与详细配置

    log4php的使用 首先引入logger.php文件.log4php可以通过引入logger.php来完成自动加载的过程.文件位置如下: 日志记录器自身没有定义日志的输出目的地和格式,所以我们通常需 ...

  10. JavaScript代码-----位置决定结果

    刚学JavaScript的时候,即使照着书上的代码敲一遍,运行的时候,得到的结果要么总是和书上的结果不同,要么是没产生效果.学到后面,才明白到其实程序的代码是没错的,错误的是代码的位置! 首先看下面这 ...