向量是线性代数最基础、最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么?

向量之所以让人迷糊,是因为我们在物理、数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是而非。

1. 物理学中的向量

物理学中的向量:空间中的箭头,由长度和它所指的方向决定

而且,在物理学中,你可以在空间中自由地移动向量,只要保持向量的长度和所指的方向不变,向量便保持不变,即移动前后的向量是同一个向量!

2. 计算机专业中的向量

计算机中向量是有序的列表

例如我们要对房价建模,

我们可以将房屋面积和房价排在一起形成向量,假定向量中的第 1 个元素用来表示房屋面积,第 2 个元素用来表示价格。显然,这是一个有序的列表,不能随意交换向量中元素的位置。

因此,站在计算机专业的角度来看,向量不过是列表或数组的别称罢了。

3. 数学中的向量

数学中的向量综合了不同专业对向量的理解。抽象意义上,数学中的向量可以是任意的东西,只要可以对它们进行加法和数乘运算即可。这也意味着,加法和数乘是向量最底层的运算。一切复杂和抽象的东西归根结底都源自于这 2 种运算。

和物理学中的向量一样,线性代数中的向量也是有大小和方向的(物理学观点),但必须特别注意的是:线性代数中的向量不能像物理学中的向量那样随意挪动。线性代数中的向量全部都是起点固定在原点的向量!

3.1 坐标

以大家最熟悉的二维平面直角坐标系为例,线性代数中,向量的坐标由一对数字构成。这一对数字指示了如何从向量的起点(即坐标原点)出发到达向量的终点。第 1 个数字 -2 告诉我们从原点出发沿 x 轴负方向移动 2 个单位的距离,第 2 个数字 3 告诉我们从原点出发沿 y 轴正方向移动 3 个单位的距离,然后我们就能到达向量的终点了。

显然,线性代数中的向量也是一个有序的列表(计算机观点)。例如,在上面的例子中,第 1 个数字表示从向量起点(原点)沿 x 轴移动的距离,第 2 个数字表示从向量起点(原点)沿 y 轴移动的距离,这 2 个数字当然是不能随意交换位置的。

为了将向量与坐标区分开来,我们通常将向量竖着写,而将坐标横着写。但无论如何,向量和坐标是有着一一对应的关系的。

3.2 向量加法

线性代数中向量的加法运算和物理学中向量的加法运算是一样的。

例如,要计算 v + w,

我们平移其中的任意一个向量(例如 w),将 w 的起点与 v 的终点重合,则平移后 w 的终点便是 v + w 的终点,而 v+ w 的起点也是 v 的起点(即原点)。前面,咪博士提到线性代数中的向量,都是起点固定在原点,不能随意挪动的。但是,在这里,我们却将向量 w 平移了。这确实是一个例外,而且可能也是线性代数中唯一允许向量离开原点的情形了。

但是,咪博士这里要讲的重点不是向量如何做加法运算,而是为什么向量的加法运算要定义成这样?

从刚才对坐标的解释,我们可以很自然地将向量看成是对某种运动的描述(从原点出发)。向量 v 和 w 分别描述了不同的运动, 向量加法想表达的意思是:v + w 描述的运动等价于 v 和 w 这 2 种运动综合的结果。即,v + w 描述的运动相当于先执行 v 描述的运动,再执行 w 描述的运动的结果。当然,你也可以先执行 w 的运动,再执行 v 的运动。最终结果都是一样的,无论向执行 v,还是先执行 w,最终都等于 v+ w 的运动。

这样理解起来比较抽象,咪博士还是为大家举一个具体的例子吧。

2]

假定我们有 2 个向量 [1 2 ]2]和 [ 3 -1 ] [3−1]。现在我们要对它们进行加法运算。

按照向量加法运算的计算方法,我们平移向量 [3 -1 ] [3−1] ,让它的起点与向量 [1 2 ] [12] 的终点重合。

如果将向量看看成是某种形式的运动,那么 2 个向量相加就是相继执行向量对应的运动。最终向量相加的结果所表示的运动,就相当于,先沿 x 轴正方向移动 1 + 3 个单位,再沿 y 轴正方向移动 2 + (-1) 个单位。仔细想想,相加后的向量是不是恰好就是从原点出发,终点落在移动后的那个向量的终点上?

3.3 向量数乘

向量的数乘运算比加法运算要容易得多。向量的数乘运算就是对向量进行缩放,等于将向量中的各个元素(分量)分别进行缩放。现在,如果从向量坐标和运动的观点出发,是不是很容易理解了呢?

总之,要深入理解线性代数的本质,我们就需要学会灵活地在向量的不同解释之间相互转换。

原文链接:http://www.ipaomi.com/2017/11/17/线性代数的本质与几何意义-01-向量是什么?3blue1brown-咪博/

线性代数的本质与几何意义 01. 向量是什么?(3blue1brown 咪博士 图文注解版)的更多相关文章

  1. 线性代数的本质与几何意义 03. 矩阵与线性变换 (3blue1brown 咪博士 图文注解版)

    首先,恭喜你读到了咪博士的这篇文章.本文可以说是该系列最重要.最核心的文章.你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么.读完咪博士的这篇文章,你一定会有一种醍醐灌顶.豁然开朗的感觉! ...

  2. 线性代数的本质与几何意义 02. 线性组合、张成的空间、基(3blue1brown 咪博士 图文注解版)

    1. 线性组合 接下来我们要换一个角度来看向量.以二维平面直角坐标系为例,i, j 分别是沿 2 个坐标轴方向的单位向量.那么坐标平面上的其他向量,例如 [ 3  -2 ] [3−与 i, j 是什么 ...

  3. 线性代数的28法则:作为程序员掌握这些API就够用了……

    目录 1. 向量 & 矩阵 1.1. 问: np.ndarray 与 np.matrix 的区别 1.2. 向量空间 2. 算术运算 2.1. 为什么线性代数定义的乘积运算不按照加法的规则(按 ...

  4. spring mvc注解版01

    spring mvc是基于servlet实现的在spring mvc xml版中已经说过了,注解版相较于xml版更加简洁灵活. web项目的jar包: commons-logging-1.1.3.ja ...

  5. 【01】《html5权威指南》(扫描版)(全)

    [01]<html5权威指南>(扫描版)(全) []魔芋:无高清电子书.   只看第五部分,高级功能. 作者:(美)弗里曼 著,谢延晟,牛化成,刘美英 译 [美]adam freeman ...

  6. 线性代数的视角理解LSR(least square regression)的参数评估算法本质

    https://medium.com/@andrew.chamberlain/the-linear-algebra-view-of-least-squares-regression-f67044b7f ...

  7. DX12龙书 01 - 向量在几何学和数学中的表示以及运算定义

    0x00 向量 向量 ( vector ) 是一种兼具大小 ( magnitude ) 和方向的量. 0x01 几何表示 几何方法中用一条有向线段来表示一个向量,其中,线段长度代表向量的模,箭头的指向 ...

  8. IT架构的本质--阅读笔记01

    万物都有其本质,也只有了解了事物的本质之后,才不至于出现在事物稍作改变时就难以应对的情况,作为软件工程专业的学生,我们应该对IT架构的本质有一定的了解.“老僧三十年前未参禅时,见山是山,见水是水.及至 ...

  9. Spark Mllib里的向量标签概念、构成(图文详解)

    不多说,直接上干货! Labeled point: 向量标签 向量标签用于对Spark Mllib中机器学习算法的不同值做标记. 例如分类问题中,可以将不同的数据集分成若干份,以整数0.1.2,... ...

随机推荐

  1. P1823 [COI2007] Patrik 音乐会的等待 单调栈 洛谷luogu

    题目描述 N个人正在排队进入一个音乐会.人们等得很无聊,于是他们开始转来转去,想在队伍里寻找自己的熟人.队列中任意两个人A和B,如果他们是相邻或他们之间没有人比A或B高,那么他们是可以互相看得见的. ...

  2. flask config

    # config配置 { 'DEBUG': False, # 是否开启Debug模式 'TESTING': False, # 是否开启测试模式 'PROPAGATE_EXCEPTIONS': None ...

  3. Android学习之基础知识十二 — 第二讲:网络编程的最佳实践

    上一讲已经掌握了HttpURLConnection和OkHttp的用法,知道如何发起HTTP请求,以及解析服务器返回的数据,但是也许你还没发现,之前我们的写法其实是很有问题的,因为一个应用程序很可能会 ...

  4. Java多线程编程模式实战指南(二):Immutable Object模式

    多线程共享变量的情况下,为了保证数据一致性,往往需要对这些变量的访问进行加锁.而锁本身又会带来一些问题和开销.Immutable Object模式使得我们可以在不使用锁的情况下,既保证共享变量访问的线 ...

  5. IIC双向电平转换电路设计

    现代的集成电路工艺加工的间隙可达0.5μm 而且很少限制数字I/O 信号的最大电源电压和逻辑电平. 为了将这些低电压电路与已有的5V或其他I/O电压器件连接起来,接口需要一个电平转换器.对于双向的总线 ...

  6. RocketMQ阅读注意

    1 队列个数设置 producer发送消息时候设置,特别注意:同一个topic仅当第一次创建的时候设置有效,以后修改无效,除非修改broker服务器上的consume.json文件,

  7. UOJ400/LOJ2553 CTSC2018 暴力写挂 边分治、虚树

    传送门--UOJ 传送门--LOJ 跟隔壁通道是一个类型的 要求的式子中有两个LCA,不是很方便,因为事实上在这种题目中LCA一般都是枚举的对象-- 第二棵树上的LCA显然是动不了的,因为没有其他的量 ...

  8. Luogu3825 NOI2017 游戏 2-SAT

    传送门 第一眼看上去似乎是一个3-SAT问题 然而\(d \leq 8\)给我们的信息就是:暴力枚举 枚举\(x\)型地图变成\(a\)型地图还是\(b\)型地图(实际上不要枚举\(c\),因为\(a ...

  9. BZOJ3714 PA2014 Kuglarz 最小生成树

    题目传送门 题意:有$N$个盒子,每个盒子中有$0$或$1$个球.现在你可以花费$c_{i,j}$的代价获得$i$到$j$的盒子中球的总数的奇偶性,求最少需要多少代价才能知道哪些盒子中有球.$N \l ...

  10. Linux下修改/设置环境变量JAVA_HOME

    export设置只对当前的bash登录session有效.这是存在内存里面的.你可以写入文件一般的文件.之后source它.或者放到/etc/profile 等等的位置里,不同的地方效果不同. 1. ...