MT【37】二次函数与整系数有关的题
解析:
评:两根式是不错的考虑方向,一方面二次函数两根式之前有相应的经验,另一方面这里$\sqrt{\frac{b^2}{4}-c}$正好和两个根有关系.
MT【37】二次函数与整系数有关的题的更多相关文章
- MT【85】正整数系数
评:这类与正整数有关的题,是很多学生所不习惯以及无从下手的.事实上很多时候要用到整数的这个性质:$m>n,m,n\in Z$则$m\ge n+1$,这道题用二次函数区间上有根的一般做法也可以,大 ...
- MT【274】一道漂亮的不等式题
已知$x_1^2+x_2^2+\cdots+x_6^2=6,x_1+x_2+\cdots+x_6=0,$证明:$x_1x_2\cdots x_6\le\dfrac{1}{2}$ 解答:显然只需考虑2个 ...
- MT【251】椭圆中的好题
已知直线$l:x+y-\sqrt{3}=0$过椭圆$E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的右焦点且与椭圆$E$交于$A,B$两点,$ ...
- MT【226】费马点两题
已知$z_1=2\sqrt{3}i,z_2=3,z_3=-3,|z_3-z_4|=2\sqrt{3},$则$|z_1-z_4|+|z_2-z_4|$的最小值为_____ 提示:费马点最小,取$Z_4( ...
- MT【71】数列裂项放缩题
已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...
- hdu 4461 第37届ACM/ICPC杭州赛区I题
题意:给两个人一些棋子,每个棋子有其对应的power,若b没有或者c没有,或者二者都没有,那么他的total power就会减1,total power最少是1,求最后谁能赢 如果b或c出现的话,fl ...
- hdu 4460 第37届ACM/ICPC杭州赛区H题 STL+bfs
题意:一些小伙伴之间有朋友关系,比如a和b是朋友,b和c是朋友,a和c不是朋友,则a和c之间存在朋友链,且大小为2,给出一些关系,求出这些关系中最大的链是多少? 求最短路的最大距离 #include& ...
- zoj 3662 第37届ACM/ICPC长春赛区H题(DP)
题目:给出K个数,使得这K个数的和为N,LCM为M,问有多少种 f[i][j][k]表示选i个数,总和为j,最小公倍数为k memery卡的比较紧,注意不要开太大,按照题目数据开 这种类型的dp也是第 ...
- MT【127】点对个数两题之一【图论】
在平面上有\(n\) 个点$S={x_1,x_2\cdots,x_n}, $ 其中任意两个点之间的距离至少为 \(1\), 证明在这 \(n\) 个点中距离为 \(1\)的点对数不超过 \(3n\). ...
随机推荐
- min-max 容斥
$\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1 ...
- Luogu3527 POI2011 Meteors 整体二分、树状数组、差分
传送门 比较板子的整体二分题目,时限有点紧注意常数 整体二分的过程中将时间在\([l,mid]\)之间的流星使用树状数组+差分进行维护,然后对所有国家查看一遍并分好类,递归下去,记得消除答案在\([m ...
- BZOJ4237 JOISC2014 稻草人 CDQ分治、单调栈
传送门 题意:给出平面上$N$个点,求满足以下两个条件的矩形:①左下角与右上角各有一个点:②矩形内部没有点.$N \leq 2 \times 10^5$,所有数字大于等于$0$,保证坐标两两不同 最开 ...
- React-简书视频学习总结
react的基础语法 redux这个数据层框架 react-redux如何方便我们在react中使用redux react-router 4.0 这样的非常实用的相关的第三方模块儿 immutable ...
- 阿里云telnet 3306端口失败
在阿里云的服务器上安装了MySQL, 然后远程访问总是不通. 查询了很久,排查思路如下: 检查mysql是否启动 检查本机3306端口是否处于监听状态 检查阿里云控制台是否开启了安全限制 检查mysq ...
- Linux查看特定端口是否被占用并kill掉相关进程
今天在搭建Zookeeper集群的时候,需要频繁启动zookeeper,但是启动的时候,有时会提示下列错误信息: zookeeper需要的地址已经被占用了,其实是因为上一次的zookeeper没有关闭 ...
- 一个有趣的问题——HTTP是“超文本传输协议”还是“超文本转移协议”
最近在看<HTTP图解>这本书,书中提到了对国内对HTTP协议名称的翻译问题,并且给出了一些网友讨论的原稿链接,我看了一下觉得挺有意思的,另外我本人也觉得翻译对于理解协议本身非常重要,就整 ...
- C# 深浅复制 MemberwiseClone
学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现在,学习代表你的将来 最近拜读了大话设计模式:原型模式,该模式主要应用C# 深浅复制来实现的!关于深浅复制大家可参考 ...
- 利用Git工具将本地创建的项目上传到Github上
前言 作为一个对前沿技术很看好的小青年,怎么能不会用Github呢?一年前我创建了Github,也知道git,但是尝试过用,但是就没弄明白,很多粉丝都问我Github的账号,想关注一波,无奈里面啥都没 ...
- 普通程序员看k8s基于角色的访问控制(RBAC)
一.知识准备 ● 上一节描述了k8s的账户管理,本文描述基于角色的访问控制 ● 网上RBAC的文章非常多,具体概念大神们也解释得很详细,本文没有站在高屋建瓴的角度去描述RBAC,而是站在一个普通程序员 ...