【Luogu4931】情侣?给我烧了! 加强版(组合计数)
【Luogu4931】情侣?给我烧了! 加强版(组合计数)
题面
题解
戳这里
忽然发现我自己推的方法是做这题的,也许后面写的那个才是做原题的QwQ。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 5000010
#define MOD 998244353
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,k,f[MAX],jc[MAX],jv[MAX],inv[MAX],bin[MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
int T=read();jc[0]=jv[0]=inv[0]=inv[1]=f[0]=bin[0]=1;
for(int i=1;i<MAX;++i)f[i]=2ll*(i-1)*(f[i-1]+f[i-2])%MOD;
for(int i=2;i<MAX;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<MAX;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<MAX;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<MAX;++i)bin[i]=2ll*bin[i-1]%MOD;
while(T--)
{
n=read();k=read();
printf("%lld\n",1ll*bin[n]*C(n,k)%MOD*C(n,k)%MOD*jc[n-k]%MOD*jc[k]%MOD*f[n-k]%MOD);
}
return 0;
}
【Luogu4931】情侣?给我烧了! 加强版(组合计数)的更多相关文章
- 【Luogu4921】情侣?给我烧了!(组合计数)
[Luogu4921]情侣?给我烧了!(组合计数) 题面 洛谷 题解 很有意思的一道题目. 直接容斥?怎么样都要一个平方复杂度了. 既然是恰好\(k\)对,那么我们直接来做: 首先枚举\(k\)对人出 ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)
[HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...
- [总结]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...
- 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)
[BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
随机推荐
- WebForms UnobtrusiveValidationMode requires a ScriptResourceMapping for 'jquery'. Please add a ScriptResourceMapping named jquery(case-sensitive).
新开一个Web site.没有使用jQuery,当Insus.NET使用一些验证控件时,如RequiredfieldValidator,程序出现下面错误: WebForms UnobtrusiveVa ...
- 练习ng-show和ng-hide的方法
在程序设计过程,我们需要把某一元素或是或一块进行显示与隐藏. 如你正使用angularjs的话,就可以使用ng-show或者ng-hide来进行控制. var showhideApp = angula ...
- odoo11新开发功能模块测试指南
根据实际业务需要,我们开发了一些生产实务中一些功能模块,作为制造行业管理信息化解决方案的基础,并应部分客户需求,做了测试系统,现将测试方式公布如下: 一.测试环境 服务器地址 http://106.1 ...
- MySQL调优基础, 与hikari数据库连接池配合
1.根据硬件配置系统参数 wait_timeout 非交互连接的最大存活时间, 10-30min max_connections 全局最大连接数 默认100 根据情况调整 back_log ...
- centos7下安装php+memcached简单记录
1)centos7下安装php 需要再添加一个yum源来安装php-fpm,可以使用webtatic(这个yum源对国内网络来说恐怕有些慢,当然你也可以选择其它的yum源) [root@nextclo ...
- ecna2017-Sheba’s Amoebas
很简单的深搜的一道题,由于这道题要找环的个数,并且认为相连当一个点的8个方向种中有一个方向和这个点相连. 这个题做法无非就是暴力每个点,然后满足条件的深搜即可. 感觉我自己的代码写的很无趣,大佬的代码 ...
- Java源码--Array
1. Arrays.asList() 该方法是将数组转化为List,需要注意以下几点: (1)该方法不适用于基本数据类型(byte,short,int,long,float,double,boolea ...
- “数学口袋精灵”第二个Sprint计划(第六~八天)
“数学口袋精灵”第二个Sprint计划----第六天~第八天进度 任务分配: 冯美欣:欢迎界面的背景音乐完善 吴舒婷:游戏界面的动作条,选择答案后的音效 林欢雯:代码算法设计 第六天: 进度: 冯美欣 ...
- 虚拟机Linux(centos)系统能ping通主机,主机无法ping通Linux解决方案
本文引用:https://blog.csdn.net/clean_water/article/details/53023308 三个步骤: 第一步:虚拟机网络连接方式选择Nat 第二步.关闭liunx ...
- SprngMVC源码学习
运行helloWorld示例进入调试界面. DispatcherServlet:前端控制器 DispatcherServlet.doDispatch(HttpServletRequest, HttpS ...