Description:

Farmer John 的 \(N\) 头奶牛(\(2\le N\le 5\times 10^4\))各自列举了她们最喜欢的五种冰激凌口味的清单。为使这个清单更加精炼,每种可能的口味用一个不超过 \(10^6\) 的正整数 \(\texttt{ID}\) 表示。如果两头奶牛的清单上有至少一种共同的冰激凌口味,那么她们可以和谐共处

请求出不能和谐共处的奶牛的对数。

Solution:

由于只有五种冰激凌,我们可以考虑容斥,对于每头奶牛和它与之前的所有奶牛枚举交集

但记录状态十分蛋疼,用个map就好了,复杂度O(n*2^5),常数巨大,居然没有bitset暴力跑得快

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=1e5+5,inf=1e9;
int n;string a[15],s; inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;} map<string, ll > f; int main()
{
scanf("%d",&n); ll ans=1ll*n*(n-1)/2;
for(int i=1;i<=n;++i) {
for(int j=1;j<=5;++j) cin>>a[j];
sort(a+1,a+6); ll res=0;
for(int j=1;j<32;++j) {
int cnt=0; s="";
for(int k=1;k<=5;++k)
if(j&(1<<(k-1))) ++cnt,s+="?"+a[k];
if(cnt&1) res+=f[s];
else res-=f[s];
++f[s];
}
ans-=res;
}
printf("%lld",ans);
return 0;
}

神奇的暴力:

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <bitset>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=2e5+5;
int n,a[mxn][6];
inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;} map<int ,bitset<mxn> > bit; int main()
{
n=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=5;++j)
bit[a[i][j]=read()].set(i);
int ans=0; bitset<mxn> tp;
for(int i=1;i<=n;++i) {
tp.reset();
for(int j=1;j<=5;++j) tp|=bit[a[i][j]];
ans+=n-tp.count();
}
cout<<ans/2;
return 0;
}

[USACO18DEC]Cowpatibility的更多相关文章

  1. [USACO18DEC]Cowpatibility(容斥 or bitset优化暴力)

    题面 题意: 给出n个五元组(一个五元组的五个数互不相同),我们称两个五元组不和谐,当且仅当任意元素都不相同,求有多少对五元组不和谐. \(Solution:\) 很容易想到 Ans = 总共对数-和 ...

  2. P5123 [USACO18DEC]Cowpatibility(容斥)

    Luogu5123 计算[两组数中有相同的]=\(\sum_{i}\)两组数中\(i\)个数相同的组合方案 map <string,int> 操作\(:\)加上\(,\)防止算重 #inc ...

  3. 洛谷P5155 [USACO18DEC]Balance Beam(期望,凸包)

    你以为它是一个期望dp,其实它是一个凸包哒! 设平衡木长度为\(L\),把向右走平衡木那个式子写一下: \[dp[i]=\frac{dp[i+1]+dp[i-1]}{2}\] 然后会发现这是一个等差数 ...

  4. Luogu5155 [USACO18DEC]Balance Beam

    题目链接:洛谷 这道题看起来是个期望题,但是其实是一道计算几何(这种题太妙了) 首先有一个很好的结论,在一个长度为$L$的数轴上,每次从$x$处出发,不停地走,有$\frac{x}{L}$的概率从右端 ...

  5. [USACO18DEC]Balance Beam

    题目链接:这里 或者这里 答案是很显然的,记\(g(i)\)为在\(i\)下平衡木时的期望收益 那么\(g(i)=max(f(i),\frac{g(i-1)+g(i+1)}{2})\) 好了做完了 T ...

  6. 题解-USACO18DEC Sort It Out

    Problem 洛谷5156 题意概要:给定一个长为\(n\)的排列,可以选择一个集合\(S\)使这个集合内部元素排到自己在整个序列中应该在的位置(即对于集合\(S\)内的每一个元素\(i\),使其排 ...

  7. 题解-USACO18DEC Balance Beam详细证明

    (翻了翻其他的题解,觉得它们没讲清楚这个策略的正确性) Problem 洛谷5155 题意概要:给定一个长为\(n\)的序列,可以选择以\(\frac 12\)的概率进行左右移动,也可以结束并得到当前 ...

  8. [USACO18DEC]The Cow Gathering

    Description: 给定一棵树,每次删去叶子,有m个限制,分别为(a,b)表示a需要比b先删,为每个点能否成为最后被删的点 Hint: \(n,m \le 10^5\) Solution: 手模 ...

  9. BZOJ5487: [Usaco2018 Dec]Cowpatibility

    Description 研究证明,有一个因素在两头奶牛能否作为朋友和谐共处这方面比其他任何因素都来得重要--她们是不是喜欢同 一种口味的冰激凌!Farmer John的N头奶牛(2≤N≤50,000) ...

随机推荐

  1. mysql的innodb存储引擎

    innodb是支持事务的存储引擎,支持ACID特性的ACID(指数据库事务正确执行的四个基本要素的缩写) 包含:原子性(Atomicity).一致性(Consistency).隔离性(Isolatio ...

  2. 前后台交互经常使用的技术汇总(后台:Java技术,前台:Js或者Jquery)

    1:由于针对特定的前后台交互用到的知识总结,所以不大量贴代码,主要给出思路,方便自己以后脑补和技术总结,当然也希望可以帮助到别人. 后台Json和其他格式转化,之前总结过Json和对象,集合,字符串的 ...

  3. 记录一次因代理Controller产生的404问题

    spring 3.2.4 为了给每一个controller配置一个拦截器链 import com.google.common.collect.Lists; import org.aopalliance ...

  4. Windows Server 2012 R2 设置 NTP 服务

    其实和以前的server版本配置没啥不一样 都是先改注册表: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config\ ...

  5. Android Studio运行项目报错:Error:null value in entry: annotationProcessorOutputFolder=null的解决方案

    一般是在Android studio异常退出(比如强制关机)后,重新打开后运行项目出现该问题. 解决方案 删除项目根目录的.gradle文件夹,然后Clean  Project —— Rebulid ...

  6. python之集合set

    1.测试 # python2和python3方法列表相同 ops23 = ['add', 'clear', 'copy', 'difference', 'difference_update', 'di ...

  7. Bootstrap富文本编辑器-bootstrap-wysiwyg

    在进行英语试题的录入中,因为英语试题经常会有类似如下的试题: My friend watches dragon boat races at the Dragon Boat Festival.(对划线部 ...

  8. 【Android】Android 代码判断是否获取ROOT权限(一)

    [Android]Android 代码判断是否获取ROOT权限 方法比较简单,直接粘贴代码 public synchronized boolean getRootAhth() { Process pr ...

  9. Visio制图之垮职能流程图

    Visio制图中常用的一种就是带有不同职能,不同阶段的流程关系图. 下面是根据实际生产情况制作的一张“软件生产流程关系图”,供参考.

  10. spark操作Kudu之写 - 使用DataFrame API

    在通过DataFrame API编写时,目前只支持一种模式“append”.尚未实现的“覆盖”模式 import org.apache.kudu.spark.kudu._ import org.apa ...