1.  kaggle泰坦尼克数据titanic完整下载,原作者良心分享

https://download.csdn.net/download/lansui7312/9936840

2. 缺失值处理

# -*- coding:utf -
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor df = pd.read_csv('train.csv',header=0)
# SibSp 堂兄弟/妹个数
# Parch 父母与小孩个数
# Cabin 客舱
# Embarked 登船港口 # df.head(20)
# df.info()
# print(df.describe())
# print(df.columns[1]) # 男性和女性幸存率查看
x=[df[(df.Sex=='male')]['Sex'].size,df[(df.Sex=='female')]['Sex'].size]
# print(x)
y=[df[(df.Sex=='male') & (df.Survived==1)]['Sex'].size,
df[(df.Sex=='female') & (df.Survived==1)]['Sex'].size] # print(y[1]*100/x[1],y[0]*100/x[0]) # 缺失值处理
# 1. 删掉缺失行
# 2. 上船地点不重要,用众数赋值
df.Embarked[df.Embarked.isnull()] = df.Embarked.dropna().mode().values
# print(df.Embarked) #3. 标称属性,赋予缺失值,因为缺失本身可能也是一种隐含信息。比如Cabin代表没有船舱
df.Cabin[df.Cabin.isnull()]='U0'
# print(df.Cabin) #4. 使用回归、随机森林等模型来预测缺失属性的值
# 因为年龄是一个相当重要的特征,所以要保证一定的缺失值填充准确率
age_df=df[['Age','Survived','Fare','Parch','SibSp','Pclass']]
age_df_notnull = age_df.loc[(df.Age.notnull())]
age_df_isnull = age_df.loc[(df.Age.isnull())]
X = age_df_notnull.values[:,1:]
Y = age_df_notnull.values[:,0]
# y1 = age_df_notnull.values[:,2:]
# X[:,0]是numpy中数组的一种写法表示对一个二维数组,取该二维数组第一维中的所有数据,第二维中取第0个数据,直观来说,X[:,0]就是取所有行的第0个数据, X[:,1] 就是取所有行的第1个数据
# print(X)
rfr = RandomForestRegressor(n_estimators=1000,n_jobs=-1)
rfr.fit(X,Y)
predictAges = rfr.predict(age_df_isnull.values[:,1:])
df.loc[(df.Age.isnull()),'Age'] = predictAges print(df.describe())

3.

 

Titanic缺失数值处理 & 存活率预测的更多相关文章

  1. kaggle入门项目:Titanic存亡预测(二)数据处理

    原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accu ...

  2. Kaggle入门——泰坦尼克号生还者预测

    前言 这个是Kaggle比赛中泰坦尼克号生存率的分析.强烈建议在做这个比赛的时候,再看一遍电源<泰坦尼克号>,可能会给你一些启发,比如妇女儿童先上船等.所以是否获救其实并非随机,而是基于一 ...

  3. kaggle& titanic代码

    这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titan ...

  4. 阿里如何实现海量数据实时分析技术-AnalyticDB

    导读:随着数据量的快速增长,越来越多的企业迎来业务数据化时代,数据成为了最重要的生产资料和业务升级依据.本文由阿里AnalyticDB团队出品,近万字长文,首次深度解读阿里在海量数据实时分析领域的多项 ...

  5. python 缺失值处理(Imputation)

    一.缺失值的处理方法 由于各种各样的原因,真实世界中的许多数据集都包含缺失数据,这些数据经常被编码成空格.nans或者是其他的占位符.但是这样的数据集并不能被scikit - learn算法兼容,因为 ...

  6. python大战机器学习——数据预处理

    数据预处理的常用流程: 1)去除唯一属性 2)处理缺失值 3)属性编码 4)数据标准化.正则化 5)特征选择 6)主成分分析 1.去除唯一属性 如id属性,是唯一属性,直接去除就好 2.处理缺失值 ( ...

  7. PimaIndiansdiabetes-数据预处理实验(一)

    有趣的事,Python永远不会缺席! 如需转发,请注明出处:小婷儿的python https://www.cnblogs.com/xxtalhr/p/10859517.html 链接:https:// ...

  8. [阿里DIEN] 深度兴趣进化网络源码分析 之 Keras版本

    [阿里DIEN] 深度兴趣进化网络源码分析 之 Keras版本 目录 [阿里DIEN] 深度兴趣进化网络源码分析 之 Keras版本 0x00 摘要 0x01 背景 1.1 代码进化 1.2 Deep ...

  9. Python之replace()方法失效

    1.背景 Titanic存活率预测案例: # 读取数据 df_train = pd.read_csv("./data/train.csv") df_train.head() OUT ...

随机推荐

  1. Java基础-常用工具类(二)

    Scanner 类 java.util.Scanner 是 Java5 的新特征,我们可以通过 Scanner 类来获取用户的输入. 通过 Scanner 类的 next() 与 nextLine() ...

  2. 第一个Spring 程序

    一 搭建好开发环境 JDK Eclipse 等 二 下载jar包 https://commons.apache.org/logging/ https://repo.spring.io/release/ ...

  3. 18-09-21 numpy 的基础学习01

    # 1关于numpy 的学习import numpy as np # 一 如何创建数组****# 1 有规律的一维数据的创建======# 1 range() 和arange() 区别 貌似没有区别l ...

  4. [多线程] 线程中的synchronized关键字锁

    为什么要用锁? 在多线程中,难免会出现在多个线程中对同一个对象的实例变量或者全局静态变量进行并发访问的情况,如果不做正确的同步处理,那么产生的后果就是"脏读",也就是取到的数据其实 ...

  5. __FILES__

    _FILE_ :被称为PHP魔术常量 ,返回当前执行PHP脚本的完整路径和文件名,包含一个绝对路径 1)dirname(__FILE___) 函数返回的是脚本所在在的路径.   比如文件 b.php ...

  6. python day19--面向对象,接口,封装

    #1.接口类,对象类.规范类中方法的统一. # 第一版:三个类,每个类中有相同的方法 # class Alipay: # def __init__(self,money): # self.money= ...

  7. 自动化测试-8.selenium操作元素之键盘和鼠标事件

    前言 在前面的几篇中重点介绍了一些元素的定位方法,定位到元素后,接下来就是需要操作元素了.本篇总结了web页面常用的一些操作元素方法,可以统称为行为事件 有些web界面的选项菜单需要鼠标悬停在某个元素 ...

  8. Linux命令学习之路-文档浏览之less

    使用权限:所有角色 使用方式:less [ options ] filename 作用:文档内容浏览,可向前或者向后浏览文档内容 注意点: 1.less 命令和 more 命令的作用大致相同,less ...

  9. Linux装agent

    解压Linux.zip  Linux的负载机链接:https://pan.baidu.com/s/1yrmsT3PYfuL9Wlh4FEYxaA 密码:s72n unzip Linux.zip chm ...

  10. idea常用的快捷键

    psvm,快速生存main类 快速生成main类: " public static void main(String[] args) {}",十分常用. 2 sout ,快捷生成输 ...