map 就是对一个RDD的各个元素都施加处理,得到一个新的RDD 的过程

[training@localhost ~]$ cat names.txt
Year,First Name,County,Sex,Count
2012,DOMINIC,CAYUGA,M,6
2012,ADDISON,ONONDAGA,F,14
2012,ADDISON,ONONDAGA,F,14
2012,JULIA,ONONDAGA,F,15
[training@localhost ~]$ hdfs dfs -put names.txt
[training@localhost ~]$ hdfs dfs -cat names.txt
Year,First Name,County,Sex,Count
2012,DOMINIC,CAYUGA,M,6
2012,ADDISON,ONONDAGA,F,14
2012,ADDISON,ONONDAGA,F,14
2012,JULIA,ONONDAGA,F,15
[training@localhost ~]$

In [98]: t_names = sc.textFile("names.txt")
17/09/24 06:24:22 INFO storage.MemoryStore: Block broadcast_27 stored as values in memory (estimated size 230.5 KB, free 2.3 MB)
17/09/24 06:24:23 INFO storage.MemoryStore: Block broadcast_27_piece0 stored as bytes in memory (estimated size 21.5 KB, free 2.3 MB)
17/09/24 06:24:23 INFO storage.BlockManagerInfo: Added broadcast_27_piece0 in memory on localhost:33950 (size: 21.5 KB, free: 208.6 MB)
17/09/24 06:24:23 INFO spark.SparkContext: Created broadcast 27 from textFile at NativeMethodAccessorImpl.java:-2

In [99]: rows=t_names.map(lambda line: line.split(","))

In [100]: rows.take(1)

17/09/24 06:25:23 INFO mapred.FileInputFormat: Total input paths to process : 1
17/09/24 06:25:23 INFO spark.SparkContext: Starting job: runJob at PythonRDD.scala:393
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Got job 15 (runJob at PythonRDD.scala:393) with 1 output partitions
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Final stage: ResultStage 15 (runJob at PythonRDD.scala:393)
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Missing parents: List()
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Submitting ResultStage 15 (PythonRDD[46] at RDD at PythonRDD.scala:43), which has no missing parents
17/09/24 06:25:23 INFO storage.MemoryStore: Block broadcast_28 stored as values in memory (estimated size 5.2 KB, free 2.3 MB)
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_26_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 8
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_18_piece0 on localhost:33950 in memory (size: 3.7 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO storage.MemoryStore: Block broadcast_28_piece0 stored as bytes in memory (estimated size 3.3 KB, free 2.3 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 9
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_19_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 10
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Added broadcast_28_piece0 in memory on localhost:33950 (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.SparkContext: Created broadcast 28 from broadcast at DAGScheduler.scala:1006
17/09/24 06:25:24 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 15 (PythonRDD[46] at RDD at PythonRDD.scala:43)
17/09/24 06:25:24 INFO scheduler.TaskSchedulerImpl: Adding task set 15.0 with 1 tasks
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_20_piece0 on localhost:33950 in memory (size: 3.7 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 11
17/09/24 06:25:24 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 15.0 (TID 15, localhost, partition 0,PROCESS_LOCAL, 2147 bytes)
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_21_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 12
17/09/24 06:25:24 INFO executor.Executor: Running task 0.0 in stage 15.0 (TID 15)
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_22_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 13
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_23_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 14
17/09/24 06:25:24 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/names.txt:0+136
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_24_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 15
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_25_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 16
17/09/24 06:25:24 INFO python.PythonRunner: Times: total = 78, boot = 49, init = 25, finish = 4
17/09/24 06:25:24 INFO executor.Executor: Finished task 0.0 in stage 15.0 (TID 15). 2203 bytes result sent to driver
17/09/24 06:25:24 INFO scheduler.DAGScheduler: ResultStage 15 (runJob at PythonRDD.scala:393) finished in 0.438 s
17/09/24 06:25:24 INFO scheduler.DAGScheduler: Job 15 finished: runJob at PythonRDD.scala:393, took 1.160085 s
17/09/24 06:25:24 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 15.0 (TID 15) in 429 ms on localhost (1/1)
17/09/24 06:25:24 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 15.0, whose tasks have all completed, from pool
Out[100]: [[u'Year', u'First Name', u'County', u'Sex', u'Count']]

In [101]: rows.take(2)
17/09/24 06:25:29 INFO spark.SparkContext: Starting job: runJob at PythonRDD.scala:393
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Got job 16 (runJob at PythonRDD.scala:393) with 1 output partitions
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Final stage: ResultStage 16 (runJob at PythonRDD.scala:393)
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Missing parents: List()
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Submitting ResultStage 16 (PythonRDD[47] at RDD at PythonRDD.scala:43), which has no missing parents
17/09/24 06:25:29 INFO storage.MemoryStore: Block broadcast_29 stored as values in memory (estimated size 5.2 KB, free 2.2 MB)
17/09/24 06:25:29 INFO storage.MemoryStore: Block broadcast_29_piece0 stored as bytes in memory (estimated size 3.3 KB, free 2.2 MB)
17/09/24 06:25:29 INFO storage.BlockManagerInfo: Added broadcast_29_piece0 in memory on localhost:33950 (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:29 INFO spark.SparkContext: Created broadcast 29 from broadcast at DAGScheduler.scala:1006
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 16 (PythonRDD[47] at RDD at PythonRDD.scala:43)
17/09/24 06:25:29 INFO scheduler.TaskSchedulerImpl: Adding task set 16.0 with 1 tasks
17/09/24 06:25:29 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 16.0 (TID 16, localhost, partition 0,PROCESS_LOCAL, 2147 bytes)
17/09/24 06:25:29 INFO executor.Executor: Running task 0.0 in stage 16.0 (TID 16)
17/09/24 06:25:29 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/names.txt:0+136
17/09/24 06:25:29 INFO python.PythonRunner: Times: total = 71, boot = 25, init = 45, finish = 1
17/09/24 06:25:29 INFO executor.Executor: Finished task 0.0 in stage 16.0 (TID 16). 2267 bytes result sent to driver
17/09/24 06:25:30 INFO scheduler.DAGScheduler: ResultStage 16 (runJob at PythonRDD.scala:393) finished in 0.196 s
17/09/24 06:25:30 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 16.0 (TID 16) in 202 ms on localhost (1/1)
17/09/24 06:25:30 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 16.0, whose tasks have all completed, from pool
17/09/24 06:25:30 INFO scheduler.DAGScheduler: Job 16 finished: runJob at PythonRDD.scala:393, took 0.408908 s
Out[101]:
[[u'Year', u'First Name', u'County', u'Sex', u'Count'],
[u'2012', u'DOMINIC', u'CAYUGA', u'M', u'6']]

In [102]:

来自:

https://www.supergloo.com/fieldnotes/apache-spark-transformations-python-examples/

[spark][python]Spark map 处理的更多相关文章

  1. [Spark][Python]spark 从 avro 文件获取 Dataframe 的例子

    [Spark][Python]spark 从 avro 文件获取 Dataframe 的例子 从如下地址获取文件: https://github.com/databricks/spark-avro/r ...

  2. [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:

    [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子: mydf001=sqlContext.read.format("jdbc").o ...

  3. [Spark][Python]Spark Python 索引页

    Spark Python 索引页 为了查找方便,建立此页 === RDD 基本操作: [Spark][Python]groupByKey例子

  4. [Spark][Python]Spark Join 小例子

    [training@localhost ~]$ hdfs dfs -cat people.json {"name":"Alice","pcode&qu ...

  5. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  6. [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子

    [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext. ...

  7. [Spark][Python]DataFrame中取出有限个记录的例子

    [Spark][Python]DataFrame中取出有限个记录的例子: sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json(&q ...

  8. [Spark][python]以DataFrame方式打开Json文件的例子

    [Spark][python]以DataFrame方式打开Json文件的例子: [training@localhost ~]$ cat people.json{"name":&qu ...

  9. [Spark][Python]sortByKey 例子

    [Spark][Python]sortByKey 例子: [training@localhost ~]$ hdfs dfs -cat test02.txt00002 sku01000001 sku93 ...

随机推荐

  1. 工程设计文档服务EngineerCMS

    工程设计单位或个人的设计文件分类有其特点,利用engineercms的分类目录可以很好地管理资料.多单位,多人,多工程都可以适应. 其他engineercms是一个通用的文档管理,文档协作,在线预览d ...

  2. 安卓preview不显示的问题

    Render Problem Failed to load AppCompat ActionBar with unknown error 解决方法:将styles.xml文件中的: <resou ...

  3. (网页)SQLserver中在上线的项目中遇到科学计数法怎么办?

    遇到这个问题,首先上线的数据能清除吗?显然是不能的. 1.首先要去找这些科学计数法的数字是哪里来的. 2.怎么在不改变数据的情况下去操作这张表.可以使用convert()转一下Decimal.

  4. mysql的varchar字段可以存储多少个中文字符

    创建数据库,并创建一张表mytb进行测试 ******************************************************************************* ...

  5. python第六十天-----RabbitMQ

    RabbitMQ消息队列:默认为消息轮循模式,按client端启动是顺序接收 server端 import pika connection = pika.BlockingConnection(pika ...

  6. January 28th, 2018 Week 05th Sunday

    I wish you all I ever wanted for you, I wish you the best. 我希望你不负我的期望,愿你一切安好. I hope I can live up t ...

  7. Axios发送请求时params和data的区别

    在使用axios时,注意到配置选项中包含params和data两者,以为他们是相同的,实则不然. 因为params是添加到url的请求字符串中的,用于get请求. 而data是添加到请求体(body) ...

  8. IE8以下兼容

    <!--[if lt IE 9]><script type="text/javascript">alert('IE版本太低,请升级后使用');</sc ...

  9. Luogu P4705 玩游戏

    题目描述 Alice 和 Bob 又在玩游戏. 对于一次游戏,首先 Alice 获得一个长度为 ​ 的序列 ​,Bob 获得一个长度为 ​ 的序列 bb.之后他们各从自己的序列里随机取出一个数,分别设 ...

  10. 解决eclipse中Tomcat服务器的server location选项不能修改的问题

    在Eclipse菜单栏中选择window — show view — server 可以看到服务的面板,服务面板中可看到已配置的Tomcat以及Tomcat下的项目 双击tomca进入设置界面,如果看 ...