Luogu4652 CEOI2017 One-Way Streets 树上差分
题意:给出$N$个点、$M$条无向边的图,现在你需要给它定向,并满足$Q$个条件:每个条件形如$(x_i,y_i)$,表示定向之后需要存在路径从$x_i$走向$y_i$。问每条边是否都有唯一定向方式。$N,M,Q \leq 10^5$
图论总是涉及的算法不难,但是就是脑子生锈想不出来
可以知道一个边双联通分量里面的所有边的方向都是一定不能确定的,因为如果存在一种方式满足所有条件,将这个边双联通分量里的所有边取反之后也一定满足条件。所以我们只需要考虑割边。
不妨在原图中找到一棵树,这棵树上必定包含所有的割边。通过差分将非割边打上标记,我们就可以通过在新的树上求$LCA$加上差分对所有边向上还是向下打好标记,最后$dfs$求出答案即可。
实际上还可以并查集,但是并查集写炸了qwq
注意重边,还要注意图不连通的情况
#include<bits/stdc++.h>
using namespace std; inline int read(){
int a = ;
bool f = ;
char c = getchar();
while(c != EOF && !isdigit(c)){
if(c == '-')
f = ;
c = getchar();
}
while(c != EOF && isdigit(c)){
a = (a << ) + (a << ) + (c ^ '');
c = getchar();
}
return f ? -a : a;
} const int MAXN = ;
struct Edge{
int end , upEd;
}Ed[MAXN << ];
int N , M , cntEd = , head[MAXN] , dep[MAXN] , up[MAXN] , down[MAXN] , can[MAXN] , jump[MAXN][];
char ans[MAXN];
bool vis[MAXN]; inline void addEd(int a , int b){
Ed[++cntEd].end = b;
Ed[cntEd].upEd = head[a];
head[a] = cntEd;
} void dfs(int x , int fa){
jump[x][] = fa;
dep[x] = dep[fa] + ;
for(int i = ; i <= ; i++)
jump[x][i] = jump[jump[x][i - ]][i - ];
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!dep[Ed[i].end])
dfs(Ed[i].end , x);
else
if(dep[Ed[i].end] > dep[x]){
can[Ed[i].end]++;
can[x]--;
}
} void Dfs(int x){
vis[x] = ;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(dep[Ed[i].end] == dep[x] + && !vis[Ed[i].end]){//不加vis判断会炸!!!
Dfs(Ed[i].end);
if(can[Ed[i].end] == )
if((i & ) && up[Ed[i].end] || !(i & ) && down[Ed[i].end])
ans[i >> ] = 'R';
else
if(!(i & ) && up[Ed[i].end] || (i & ) && down[Ed[i].end])
ans[i >> ] = 'L';
up[x] += up[Ed[i].end];
down[x] += down[Ed[i].end];
can[x] += can[Ed[i].end];
}
} inline int jumpToLCA(int x , int y){
if(dep[x] < dep[y])
swap(x , y);
for(int i = ; i >= ; i--)
if(dep[x] - ( << i) >= dep[y])
x = jump[x][i];
if(x == y)
return x;
for(int i = ; i >= ; i--)
if(jump[x][i] != jump[y][i]){
x = jump[x][i];
y = jump[y][i];
}
return jump[x][];
} int main(){
#ifdef LG
freopen("4652.in" , "r" , stdin);
freopen("4652.out" , "w" , stdout);
#endif
N = read();
M = read();
for(int i = ; i <= M ; i++){
int a = read() , b = read();
addEd(a , b);
addEd(b , a);
}
for(int i = ; i <= N ; i++)
if(!dep[i])
dfs(i , );
for(int Q = read() ; Q ; Q--){
int a = read() , b = read() , t = jumpToLCA(a , b);
up[a]++;
up[t]--;
down[t]--;
down[b]++;
}
memset(ans , 'B' , sizeof(ans));
for(int i = ; i <= N ; i++)
if(!vis[i])
Dfs(i);
for(int i = ; i <= M ; i++)
cout << ans[i];
return ;
}
Luogu4652 CEOI2017 One-Way Streets 树上差分的更多相关文章
- loj2480 [CEOI2017]One-Way Streets 边双+树上差分
边双无法确定 缩完边双就是一棵树 树上差分随意弄一下吧... #include <vector> #include <cstdio> #include <cstring& ...
- 【BZOJ-4326】运输计划 树链剖分 + 树上差分 + 二分
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 703 Solved: 461[Submit][Status] ...
- [luogu P3128][USACO15DEC]Max Flow [LCA][树上差分]
题目描述 Farmer John has installed a new system of pipes to transport milk between the stalls in his b ...
- 树上差分 (瞎bb) [树上差分][LCA]
做noip2015的运输计划写了好久好久写不出来 QwQ 于是先来瞎bb一下树上差分 混积分 树上差分有2个常用的功能: (1)记录从点i到i的父亲这条路径走过几次 (2)将每条路径(s,t ...
- [填坑]树上差分 例题:[JLOI2014]松鼠的新家(LCA)
今天算是把LCA这个坑填上了一点点,又复习(其实是预习)了一下树上差分.其实普通的差分我还是会的,树上的嘛,也是懂原理的就是没怎么打过. 我们先来把树上差分能做到的看一下: 1.找所有路径公共覆盖的边 ...
- 【NOIP2016】【LCA】【树上差分】【史诗级难度】天天爱跑步
学弟不是说要出丧题吗>>所以我就研究了1天lca又研究了1天tj然后研究了一天天天爱跑步,终于写了出来.(最后的平均用时为240ms...比学弟快了1倍...) 题意:给你颗树,然后有m个 ...
- BZOJ_4238_电压_树上差分+dfs树
BZOJ_4238_电压_树上差分+dfs树 Description 你知道Just Odd Inventions社吗?这个公司的业务是“只不过是奇妙的发明(Just Odd Inventions)” ...
- BZOJ_3307_雨天的尾巴_线段树合并+树上差分
BZOJ_3307_雨天的尾巴_线段树合并 Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y 对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成 所有发放后 ...
- [GXOI/GZOI2019]旧词(树上差分+树剖)
前置芝士:[LNOI2014]LCA 要是这题放HNOI就好了 原题:\(\sum_{l≤i≤r}dep[LCA(i,z)]\) 这题:\(\sum_{i≤r}dep[LCA(i,z)]^k\) 对于 ...
随机推荐
- Nginx 反向代理工作原理简介与配置详解
Nginx反向代理工作原理简介与配置详解 by:授客 QQ:1033553122 测试环境 CentOS 6.5-x86_64 nginx-1.10.0 下载地址:http://nginx. ...
- 9.4、__del__、__doc__、__dict__、__module__、__getitem__、__setitem__、__delitem__、__str__、__repr__、__call__
相关内容: __del__.__doc__.__dict__.__module__.__getitem__.__setitem__.__delitem__.__str__.__repr__.__cal ...
- JavaScript大杂烩1 - 理解JavaScript的类型系统
随着硬件水平的逐渐提高,浏览器的处理能力越来越强大,本人坚信,客户端会越来越瘦,瘦到只用浏览器就够了,服务端会越来越丰满:虽然很多大型的程序,比如3D软件,客户端仍然会存在,但是未来的主流必将是浏览器 ...
- LeetCode题解之Insert into a Binary Search Tree
1.题目描述 2.分析 插入算法. 3.代码 TreeNode* insertIntoBST(TreeNode* root, int val) { insert(root, val); return ...
- maven(一):是否有必要使用maven
以下是普通项目和maven项目 分别引入spring core模块的区别 1,假设我们有十个项目,都需要引入spring core模块,那么需要十份重复的Spring core.jar和commons ...
- [SequenceFile_2] SequenceFile 的基本操作
0. 说明 测试序列文件的读写操作 && 测试序列文件的排序操作 && 测试序列文件的合并操作 && 测试序列文件的压缩方式 && 测试 ...
- centos7发行版号对应基于RHEL Source(版本)对照表
基础分布 详情地址:https://wiki.centos.org/Download 存档版本 CentOS Linux 7 发布 基于RHEL Source(版本) 存档的树 7(1804) 7.5 ...
- iris数据集(.csv .txt)免费下载
我看CSDN下载的iris数据集都需要币,我愿意免费共享,希望下载后的朋友们给我留个言 分享iris数据集(供学习使用): 链接: https://pan.baidu.com/s/1Knsp7zn-C ...
- oracle经验记录
1.添加新User时必须要增加的角色权限:connect.dba.resource 2.添加表空间的语句 create tablespace DEMOSPACE datafile 'D:/test.d ...
- Visual Studio 2015的安装与测试单元的配置与使用
首先感谢吴小勇同学的教程,及其详尽周全.详见http://www.cnblogs.com/xiaoyongwu/p/5289964.html 那么正式开始,事实上在撰写这篇博文的时候,这个图标 ...