LOJ #559. 「LibreOJ Round #9」ZQC 的迷宫
一道ZZ结论题,主要是来写一写交互题的。
我们要先知道一句话:
扶着墙是肯定可以走出简单迷宫的。
然后我们冷静分析问题。若这个迷宫是\(n\times m\)的,那么最多有\(2mn+n+m\)个墙壁。
由于题目中提到方格之间都联通且形成一棵树,那么我们删去\(nm-1\)条边。
由于边界其中至多一半会经过一次,其余则不会经过,内部边可能经过两次,因此摸着墙壁前进的步数上限为 \(2(nm+n+m+1)-3(n+m)=2nm-n-m-2\)。我们在观察一下数据范围,发现:
\(l>2nm\ge 2nm-n-m-2\)。因此我们摸着墙壁走是肯定可以在规定步数内走到终点的。
然后初始时我们面向右侧,因此左侧一定有墙,所以我们只需要一直沿着左侧墙壁走即可。
由于这是交互题,因此我们可以弄出一个非常精简的核心算法:
while (!reach_dest()) move_left();
以上参考于官方题解。
然后注意一下交互题的事项即可。千万要注意请缓存,并且读进来不要连换行一起,会出锅的
CODE
#include<bits/stdc++.h>
using namespace std;
int n,m,l,d;
inline int reach_dest(void)
{
puts("reach_dest"); fflush(stdout);
int x; scanf("%d",&x); return x;
}
inline void move_left(void)
{
puts("move_left"); fflush(stdout);
int x; scanf("%d",&x);
}
int main()
{
scanf("%d%d%d%d",&n,&m,&l,&d);
while (!reach_dest()) move_left();
return 0;
}
LOJ #559. 「LibreOJ Round #9」ZQC 的迷宫的更多相关文章
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
- [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)
[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机) 试题描述 IOI 的比赛开始了.Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 …… 接着他们发现自己收 ...
- loj #547. 「LibreOJ β Round #7」匹配字符串
#547. 「LibreOJ β Round #7」匹配字符串 题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...
- loj #535. 「LibreOJ Round #6」花火 树状数组求逆序对+主席树二维数点+整体二分
$ \color{#0066ff}{ 题目描述 }$ 「Hanabi, hanabi--」 一听说祭典上没有烟火,Karen 一脸沮丧. 「有的哦-- 虽然比不上大型烟花就是了.」 还好 Shinob ...
随机推荐
- 洗礼灵魂,修炼python(26)--编程核心之“递归”
递归 1.什么是递归: 其实前面都提过,但没有详细讲.多次调用自身就叫递归 看图,这种就叫递归 看过盗梦空间没?其实也是递归 2.递归需要满足条件: 有调用函数自身 有一个正确的返回条件来结束 在使用 ...
- sqlserver序列定时初始化
1.创建序列 2.序列初始化存储过程 create procedure proDemo as begin alter sequence dbo.序列名 restart with 0; end 3.创建 ...
- 第五章 绘图基础(ALTWIND)
线上箭头表示画线的方向.WINDING模式和ALTERNATE模式都会填充三个封闭的L型区域,号码从1到3.两个更小的内部区域,号码为4和5,在ALTERNATE模式下不被填充.但是在WINDING模 ...
- Head First Android --- Enable USB debugging on your device
1. Enable USB debugging on your device On your device, open “Developer options” (in Android 4.0 o ...
- Burp Suite 抓取http、https流量配置+CA证书安装
HTTPS协议是为了数据传输安全的需要,在HTTP原有的基础上,加入了安全套接字层SSL协议,通过CA证书来验证服务器的身份,并对通信消息进行加密.基于HTTPS协议这些特性,我们在使用Burp Pr ...
- 三种方法更改MAC OS X下的HOSTS文件
1.终端更改 用程序里面打开终端(terminal),输入 sudo vi /etc/hosts 然后提示输入系统密码 hosts文件就自动打开了 接着输入 i 进入编辑模式 将添加的网站,ip拷贝进 ...
- Java设计模式之二 ----- 工厂模式
在上一篇中我们学习了单例模式,介绍了单例模式创建的几种方法以及最优的方法.本篇则介绍设计模式中的工厂模式,主要分为简单工厂模式.工厂方法和抽象工厂模式. 简单工厂模式 简单工厂模式是属于创建型模式,又 ...
- UVA127-"Accordian" Patience(模拟)
Problem UVA127-"Accordian" Patience Accept:3260 Submit:16060 Time Limit: 3000 mSec Proble ...
- BZOJ4170:极光(CDQ分治)
Description "若是万一琪露诺(俗称rhl)进行攻击,什么都好,冷静地回答她的问题来吸引她.对方表现出兴趣的话,那就慢慢地反问.在她考虑答案的时候,趁机逃吧.就算是很简单的问题,她 ...
- mysql索引优化-order/group
为排序使用索引 KEY a_b_c (a,b,c) order by 能使用索引最左前缀 -order by a -order by a,b -order by a,b,c -order by a d ...